The SLC13A5 gene codes for a sodium dependent citrate transporter (NaCT) that brings citrate, a key substrate involved in energy production, into the cell.
High-affinity sodium/citrate cotransporter that mediates the entry of citrate into cells, which is a critical participant of biochemical pathways.
May function in various metabolic processes in which citrate has a critical role such as energy production (Krebs cycle), fatty acid synthesis, cholesterol synthesis, glycolysis, and gluconeogenesis.
Involved in the regulation of citrate levels in the brain (By similarity).
About SLC13A5, a gene responsible for Citrate Transport
Citrate is a small molecule that is found in many types of food and throughout a person’s body. It is an important part of how a cell makes energy. The protein that moves citrate from outside a cell into the inner part of the cell is called a citrate transporter.
In people with seizures and neurologic problems related to the functioning of the citrate transporter, there are changes in the amino acids that make up the transporter protein. The changes in the amino acids are likely to decrease the amount of citrate that is transported into the cell.
Reduced expression of this gene is associated with longer lifespan in many organisms, including some non-human primates. Increased expression is associated with type 2 diabetes and non-alcoholic fatty liver disease. A sugary diet upregulates the expression of the gene, and so does Interleukin 6 signaling.
SLC13A5 (solute carrier family 13, member 5) encodes sodium/citrate cotransporter, which mainly localizes in cellular plasma membranes in the frontal cortex, retina, and liver.
The transporter is widely expressed in neurons, localized in the plasma membrane of various cell types, including hepatocytes in the liver, spermatozoa in the testis, and mostly astrocytes and neurons in the brain (3). Citrate is vital in cellular metabolism and neurotransmitter biogenesis (3). It is known to have an important role in the tricarboxylic acid cycle, where the molecule represents the starting point for generating reducing equivalents nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (reduced form) (FADH2), which in turn enter the electron transport chain to generate ATP (4). The brain cannot produce citrate independently; hence, it depends on citrate uptake via NaCT. Thus, the carrier has a pivotal role in mediating the uptake of circulating citrate for metabolism (4), preferably in the trivalent form rather than the divalent form.
Relatedly, when citrate transport and metabolism are disrupted, intracellular citrate levels fall, resulting in neuronal energy failure, which is thought to be one of the explanations behind epileptic symptoms (3). In other words, a lack of cellular citrate results in energy deficiency in the brain, thus possibly contributing to the pathogenesis of epilepsy and delayed brain development.
Just a brief collection of explanatory info.