From: https://www.pnas.org/content/115/43/10836 (Bruce Ames)
Taurine (2-Aminoethanesulfonic Acid).
Taurine is another example of a conditional vitamin because it is synthesized by animals (including humans), but not in sufficient amounts. It has been shown to be important in preventing numerous health problems, such as CVD, brain function, diabetes, and mitochondrial diseases, as summarized below. Because of taurine’s extensive involvement in health problems that lead to long-term damage, it is proposed here that it is also a longevity vitamin.
The synthesis of taurine involves cysteine decarboxylation and sulfhydryl oxidation. The rate of its biosynthesis is species-dependent, with a low level in humans, compared with rodents (which led to the suggestion that supplementation might be beneficial) (49). It is located in the cytosol and in mitochondria and it is present in virtually all human tissues at millimolar concentrations; it is especially high in electrically excitable and secretory tissues and in platelets. A 70-kg human contains about 70 g of taurine (50). An excellent review of all of the earlier work on taurine is available in Huxtable (50). Most of taurine is acquired from the diet, mainly from fish and other seafood, seaweed, eggs, and dark-meat poultry (51).
Taurine is particularly important in the mitochondria, where it is present as 5-taurinomethyl-uridine in tRNA-leu and tRNA-trp, and as 5-taurinomethyl-2-thiouridine in tRNA-glu, tRNA-gln, and tRNA-lys. In all five tRNAs, it is located in the wobble position, where it functions to read accurately alternate codons in the mitochondrial genome (52). A taurine modification defect in mitochondrial tRNA is associated with the mitochondrial diseases MELAS (mitochondrial encephalopathy, encephalopathy, lactic acidosis, and stroke-like episodes) and MERRF (myoclonus epilepsy with ragged-red fibers) (52), suggesting causality, and also that a taurine deficiency could result in the same diseases. Because of the involvement of mitochondria in energy production, there has been much interest in taurine in sports medicine in humans with reference to exercise-induced fatigue and recovery, as has been reviewed previously (53). In addition, a strong case has been made that taurine is the main buffer in mitochondria (54) and that it moderates mitochondrial oxidant production (55).
Another possibly important function of taurine is its detoxification of chloramine (a very toxic membrane-soluble oxidant) via its conversion to taurine-chloramine (56, 57).
Examples of several important insidious long-term pathologies that taurine would protect against are: CVD, brain dysfunction, and diabetes. Taurine effects on CVD have been examined by numerous RCTs and have been reviewed previously (51). Taurine supplementation lowers blood pressure, improves vascular function, and raises plasma hydrogen sulfide levels as shown in a recent RCT with prehypertension patients (58). Taurine consumption was the most significant factor associated with reduced risk of ischemic heart disease (IHD) in two international epidemiological studies of CVD in 61 populations (25 countries; n = 14,000): Japanese people in Okinawa had the highest taurine dietary intake and the lowest incidence of IHD and longest lifespan. In contrast, Japanese immigrants in Brazil who eat little seafood, but more meat and salt, had a 17-y shorter lifespan as a consequence of a very high IHD mortality (59). Other human clinical studies showed that taurine decreases platelet aggregation, serum cholesterol levels, LDL/triglyceride levels, and enhances cardiac function (60).
Taurine plays an important role in brain development, including neuronal proliferation, stem cell proliferation, and differentiation; it has no toxic effects in humans (61). It is a neuromodulator in the central nervous system: it activates the GABA- and glycine-insensitive chloride channel and it inhibits the N-methyl-d-aspartate receptor. It is also neuroprotective and has a role in neural development and neurogenesis; it was shown in an RCT that symptoms of psychopathology were improved by its administration in patients with first-episode psychosis (62).
Diabetic remediation by taurine has been reviewed previously (63, 64). Its supplementation remediates diabetic pathologies, including retinopathy, neuropathy, nephropathy, cardiopathy, atherosclerosis, altered platelet aggregation, and endothelial dysfunction (65). In patients with type 1 and type 2 diabetes the taurine transporter is up-regulated in mononuclear blood cells, indicating that increased levels of taurine are sought by the cell (66, 67). In rats, taurine reduces oxidative stress caused by diabetes (68, 69).
Taurine is important for fetal development, because the human fetus cannot synthesize taurine, which is provided by the mother via the taurine transporter, and it is necessary for organ development and protects against development of type 2 diabetes (70). Therefore, taurine is also a survival vitamin. Transport of taurine (53) is required for normal development of numerous fetal tissues in several experimental animals. Taurine functions as an osmolyte; it was shown to be important in that respect in a variety of species, including rodent investigations that are consistent with the above results on humans (70, 71) (SI Appendix, SI-4 Conditional Vitamins).
Taurine is well established as an important conditional vitamin for survival functions and for healthy longevity in both humans and experimental animals. I expect that a large class of new conditional vitamins will be discovered. Possible candidates are lipoic acid, ubiquinone, and carnitine.