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Longitudinal machine learning uncouples 
healthy aging factors from chronic  
disease risks

Netta Mendelson Cohen    1,2, Aviezer Lifshitz    1,2, Rami Jaschek1,2, 
Ehud Rinott1,2, Ran Balicer3, Liran I. Shlush2, Gabriel I. Barbash    1,2  & 
Amos Tanay    1,2 

To understand human longevity, inherent aging processes must be 
distinguished from known etiologies leading to age-related chronic 
diseases. Such deconvolution is difficult to achieve because it requires 
tracking patients throughout their entire lives. Here, we used machine 
learning to infer health trajectories over the entire adulthood age 
range using extrapolation from electronic medical records with partial 
longitudinal coverage. Using this approach, our model tracked the state 
of patients who were healthy and free from known chronic disease risk and 
distinguished individuals with higher or lower longevity potential using 
a multivariate score. We showed that the model and the markers it uses 
performed consistently on data from Israeli, British and US populations. For 
example, mildly low neutrophil counts and alkaline phosphatase levels serve 
as early indicators of healthy aging that are independent of risk for major 
chronic diseases. We characterize the heritability and genetic associations 
of our longevity score and demonstrate at least 1 year of extended lifespan 
for parents of high-scoring patients compared to matched controls. 
Longitudinal modeling of healthy individuals is thereby established as a tool 
for understanding healthy aging and longevity.

According to the geroscience hypothesis1, universal aging processes are 
driving multiple age-related diseases. It suggests that if the underlying 
aging mechanism can be targeted systematically, it may be possible to 
promote healthy aging and increase the lifespan while lowering the 
occurrence of multiple chronic conditions simultaneously1–3. Indeed, 
the most common age-related diseases, such as type 2 diabetes mellitus 
(T2D), chronic kidney disease (CKD), cardiovascular disease (CVD), 
liver disease (LD) of different etiologies and chronic obstructive pul-
monary disease (COPD) increase in their prevalence and intensity with 
age. However, the high prevalence of these diseases4 and their gradual 
and progressive characteristics implies that the majority of the human 
population is simultaneously aging while developing chronic disease 

phenotypes. The results show a high degree of correlation between 
all the associated age-linked clinical manifestations and a lack of a 
clear temporal hierarchy between them. Modeling aging and disease 
in an unbiased fashion, and ultimately distinguishing cause and effect 
within the complex interplay involving healthy aging and age-related 
disease5–7, remain major challenges to be addressed.

The organization of comprehensive healthcare data in electronic 
health records (EHRs)8 over the last two decades holds great promise 
for representing patient health and disease trajectories in an age-linked 
and integrative fashion9,10. For example, we recently demonstrated how 
laboratory data can be normalized for age-specific and sex-specific 
effects to devise personalized normal reference values11. However, 
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longevity score at age 80 (Fig. 1c, green), this correlation explains only 
part of the longevity score variance (Extended Data Fig. 2d). Moreover, 
for most of the major age-related diseases, we observed that incidence 
at ages 80–85 was uncorrelated with the overall longevity score at age 
80 (Fig. 1c, purple). Together, our model defines the longevity potential 
at age 80 quantitatively by encoding a physiological state that may 
be partially driven by age-related chronic disease, but cannot be fully 
explained by them. The score is defined quantitatively, suggesting it 
can be used as a possible metric for health that extends and generalizes 
classification of patients into healthy and unhealthy, and motivating 
models tracking quantitative change in health potential rather than 
prediction of transition from health to disease or mortality.

Inferring longevity potential over all ages
To infer the dynamics of longevity potential across ages, we developed 
a machine learning algorithm for inferring a fully longitudinal model 
from partial patient histories. The algorithm defines a longevity poten-
tial score for each age, starting from the older age of 80 with existing 
mortality data. Then, in an iterative process, it derives short-term mod-
els that predict either mortality within 5 years or transition to lower or 
higher longevity potential after 5 years (Fig. 1d (left), Extended Data 
Fig. 2e and Methods), using data from at most 3 years of history. The 
algorithm weaves together the short-term 5-year models into a Markov 
model that allows summing all possible future trajectories of a patient 
through the longevity potential landscape (Fig. 1d (right) and Extended 
Data Fig. 2f). Importantly, as all scores are inferred from only 3 years 
of clinical history, the model can express long-term clinical outcomes 
from very short patient histories. As shown in Fig. 1e, the longevity 
scores in early to middle adulthood do not reflect an immediate mor-
tality risk. Such immediate risks emerge only at ages 60 and older. In 
contrast, the scores separate individuals with high and low predicted 
probability of survival beyond 85 years even at age 30 (Fig. 1f). The 
certainty of the model’s prediction for the high-scoring individuals 
increases with age, as more information can be extracted from stand-
ard laboratory tests. At age 65, for example, high-scoring females are 
estimated to have a 79% probability of surviving beyond the age of 85 
years, while low-scoring females have only a 13% probability. Analysis 
of 10-year survival statistics (going 5 years beyond the data provided 
to the learning algorithm) provided initial evidence supporting the 
model’s predictions (Fig. 2a). In addition to the change in the model’s 
predictive value, the contribution of clinical markers to the longevity 
score also changed dramatically across ages (Fig. 2b). For example, 
alkaline phosphatase (ALP) is a strong marker in younger adulthood, 
while glucose and cholesterol markers impact the mid-adulthood age 
range and albumin and RDW the older ages. In summary, the new algo-
rithm introduced in this study defines the long-term longevity potential 
of patients quantitatively and based on short-term clinical histories 
across early, middle and late adulthood.

Inferring shared and specific common disease lifelong risk
To map systematically lifelong disease predisposition and its contribu-
tion to our longitudinal longevity score, we defined five major chronic 
diseases in CHSDB, including T2D, CKD, CVD, COPD and (broadly 
defined) LD4,27–30 (Fig. 3a). All of these chronic diseases are character-
ized by strong age-related incidence31,32 (Fig. 3b) and are potentially 
driving, or are affected by, the dynamics of the longevity potential as 
characterized above. To study these effects systematically, we devel-
oped an extended disease risk Markov model with data describing the 
onset of a disease. In the extended model, the short-term (5-year) risk 
for developing the disease are modeled quantitatively over a spectrum 
of scores (Fig. 4a and Extended Data Fig. 3a), with mortality modeled 
as a competing risk. Using a strategy similar to the one used in the 
longevity model, we summed all possible trajectories of patients in 
the health space to compute their lifelong probability for develop-
ing the disease (Fig. 4b). This was done for each of the major disease 

apart from smaller survey cohorts12–15, or disease registries that focus 
on diagnosis codes16,17, information on entire populations is generally 
available for time windows of no more than 20 years. This can cover 
partial patient trajectories, such as following early (for example, 25–45 
years old), middle (for example, 45–65 years old) or late adulthood 
(for example, 65–85 years old), but still cannot portray the complete 
lifelong clinical history of an individual. To understand healthy aging 
and chronic disease risks, 20 years are often not enough. While multiple 
studies reported on modeling all-cause mortality and biological age 
using common clinical markers18 without a longitudinal model, the 
impact of specific diseases on aging and the impact of aging itself on 
the predisposition to disease cannot be decoupled.

Given this motivation, we developed machine learning models 
inferring archetypical lifelong clinical trajectories from short-term 
clinical data. We applied the model to comprehensive data from the 
Clalit system19,20 and performed validation using the UK Biobank 
(UKBB) and National Health and Nutrition Examination Survey 
(NHANES) data13,21,22. This resulted in a robustly replicated working 
model that characterizes healthy aging within the framework of life-
long age-related disease risk across several healthcare systems. Using 
the model, it is now possible to deconvolute patients’ health records, 
at any age, and compute their current prospects for healthy aging, tak-
ing a more comprehensive view of their lifetime risk to develop each 
of five major chronic diseases. We used this new capability to identify 
clinical markers that are predictive of disease-free healthy aging and 
to reapproach heritability and genetic association of longevity-linked 
phenotypes. Together this shows that longitudinal models tracking 
patients as they age and transition from health toward disease can be 
readily adopted to replace static and dichotomic representations of 
healthy aging and common human diseases.

Results
Longevity potential in healthy individuals at 80 years of age
Multiple studies showed that short- to medium-term all-cause mortal-
ity is predictable from standard clinical data23–26. However, it is unclear 
to what extent such standard data encode longevity potential beyond 
the dichotomy of common age-related diseases and healthy aging. We 
reasoned that if longevity can be encoded by standard laboratory data 
in healthy individuals, we may be able to use such encoding for tracking 
the evolution of longevity potential across entire populations focusing 
on dynamics that occur long before the onset of age-related diseases. 
To test this, we used data on the medical histories of 4.57 M individuals 
from the Clalit Healthcare Services database19 (CHSDB), providing a 
total of 29.5 M patient-years between ages 30 and 85, with a median 
tracking duration of 16.6 years (Extended Data Fig. 1). We first derived 
a machine learning model predicting 5-year survival for 80-year-old 
patients using 3 years of medical history. We found that the model 
recovered a sensitive spectrum of risk levels that went well beyond a 
simple classification of healthy individuals (Fig. 1a). For example, the 
model provided separation of patients on the extreme healthy end 
of the risk distribution, showing that the 0–2% top-scoring patients 
have significantly better prognosis than the second-best 2–4% scorers 
(P = 0.00079; Extended Data Fig. 2a).

To understand how standard clinical data encode an ultra-healthy 
state at age 80, we searched for laboratory tests that correlate with the 
longevity score throughout its entire range (Fig. 1b and Extended Data 
Fig. 2b). This highlighted clinical laboratory indicators, such as red 
blood cell distribution width (RDW), C-reactive protein or albumin, 
which showed remarkably continuous links with prognosis over their 
entire normal (and abnormal) ranges. Next, we asked if prognosis at 
age 80 is mostly a function of existing diagnoses of well-characterized 
age-related diseases or whether it represents more poorly defined 
health factors. We used the multilayered CHSDB data to identify all 
key diagnostic classes linked with reduced survival (Extended Data 
Fig. 2c) and showed that while their prevalence is correlated with the 
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Fig. 1 | The evolution of longevity potential through adulthood. a, Sensitive 
longevity index for 80-year-old patients. The 5-year (left) and 10-year (right) 
Kaplan–Meier survival probability estimates (center points) are shown, 
stratified according to the computed mortality risk at age 80 (centiles, x axis)  
for all males (gray, n = 92,937) and females (pink, n = 130,804) in the CHSDB.  
The error bars indicate the 95% confidence intervals (CIs). Zoom-in of the top 
four health centiles is shown in Extended Data Fig. 2a. b, Standard labs encode 
the longevity index for 80-year-olds. The mean values of selected normalized 
labs according to the longevity score of 80-year-old patients are shown.  
c, Prevalence and 5-year risk for chronic disease according to the longevity score 
of 80-year-old patients. The fractions of patients with an existing diagnoses 
at 80 years of age (prevalence, green) and the fraction of patients with future 
diagnoses over the ages of 80–85 (risk, purple) are shown, both stratified 

according to the longevity potential score (x axis). d, Estimating longevity 
potential at any age using standard clinical data. The model defines a spectrum 
of longevity scores from mortality to optimal health for each age using only 3 
years of clinical history per patient. Machine learning was used to predict how 
patients move between states in 5-year steps (left). To compute the long-term 
longevity potential for a patient at any age, we summed all model trajectories 
starting from the state encoded by the individual’s short-term history (right). 
e, Five-year survival probability. The inferred 5-year (short-term) survival 
probabilities according to age (x axis) for low longevity (bottom 5%, purple) and 
high longevity (top 5%, green) score are shown. f, Lifelong survival probability. 
Estimation of long-term longevity potential, defined quantitatively as the 
probability of survival through to 85 years. Top-scoring patients (green) are 
identified with increasing certainty with age.
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classes separately and provided us with robust separation of patients’ 
long-term disease risks (Fig. 4c) at ages when the short-term risks are 
low and only weakly separable among patient groups (Extended Data  
Fig. 3b). The lifelong risk for a disease given a currently healthy state can 
decrease with age even when incidence is still high because an increas-
ingly larger population at risk is progressing toward the disease and is 
no longer considered healthy. For additional major age-related disease, 
longitudinal modeling was less effective. Modeling patients with Alz-
heimer’s disease was impaired by lower diagnosis reliability and lack of 
supporting clinical markers (Extended Data Fig. 3c). For multiple types 
of cancer, we observed strong short-term effects, which reduced the 

impact of long-term modeling (with the exception of smoking-related 
or alcohol-related malignancies; Extended Data Fig. 3d,e).

The predictive power of the models and the separation of high-
risk and low-risk individuals (Fig. 4c, red versus blue lines) can initially 
increase with age, given the increased availability of relevant clinical 
indicators for still-healthy patients. For example, patients at high risk 
for T2D are identified with higher sensitivity at ages 50–60 (more than 
80% lifelong risk) than at ages 30–40 (approximately 60% lifelong risk) 
because available glucose and hemoglobin A1C data provide more pre-
dictive power in middle-aged patients with more routine tracking and 
early signs of the disease. Analysis of the key features that support the 
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estimation of lifelong disease risk and data on their age trends for high-
risk and low-risk patients (Extended Data Fig. 3f–h and Extended Data 
Fig. 4) highlighted the common factors contributing to chronic disease 
predisposition. The most powerful predictive markers at younger ages 
were related to overweight, sugar and cholesterol, and were linked 
with lifelong risk (not necessarily a direct one) to all chronic diseases, 
albeit with different ranges. Factors linked with more specific risks 
were superimposed on these effects at young ages but may change in 
their distribution as aging progresses. For example, high creatinine 
and alanine transaminase (ALT) levels are linked to an elevated risk for 
CKD and LD, respectively, for patients at any age, as expected. More 
surprisingly, their correlation with the lifelong risk of other diseases is 
inverted in middle age (Extended Data Fig. 3f), suggesting a pleiotropic 
effect and justifying the detailed longitudinal modeling. As expected, 
estimated lifelong disease predispositions were strongly linked with 
one another (Extended Data Fig. 3g,h). This highlights the need in 
multivariate analysis to decouple the potentials of these diseases over 
age and characterize their contribution to the overall health state and 
longevity potential as quantified above.

The longevity potential cannot be fully explained by disease risk
As expected, we observed that the longevity score is strongly corre-
lated with the lifelong probability of developing each of the five com-
mon chronic diseases we modeled (Fig. 4d). Interestingly, some of the 
variation in longevity scores among individuals at all ages could not 
be explained by a predisposition to any of these diseases. As shown in  
Fig. 4e, projecting patients on a health map encoding the joint dis-
tribution of the lifelong risks of chronic diseases and the longevity 
score clearly showed that for a subset of patients, variation in longevity 
potential was observed despite their low estimated risk for all mod-
eled chronic diseases (Fig. 4f). This subset of the healthy population 
decreases in size with age because disease prevalence increases with 
age and the model can capture chronic disease risk more accurately in 
middle and late adulthood (Extended Data Fig. 5). Nevertheless, varia-
tion in longevity potential in these individuals is robust and represents 
a gap in our understanding of the healthy aging process.

Low neutrophils and low ALP correlate with longevity potential
To screen for predictive measures of longevity that cannot be explained 
by known chronic disease predisposition, we defined strongly healthy 
patients at all ages as those with a low chronic disease risk (all scores less 
than 0.5) and no existing diagnoses of any type of cancer. We screened 
for links between the longevity score and the onset of any disease in 
such strongly healthy individuals and identified an intriguing associa-
tion with some outcomes (for example, depression; Extended Data 
Fig. 6a). However, the associations with documented and well-defined 
diseases were overall very weak (implicating a very small fraction of 
the patients) and could not explain the broad changes in longevity 
potential for the strongly healthy patient population, as represented 
by the longevity score. To shed more light on the possible physiologi-
cal processes that underlie the longevity potential in strongly healthy 
individuals, we screened for correlations with clinical markers (Fig. 4g 

and Extended Data Fig. 6b). As expected, clinical indicators of chronic 
disease risk (for example, glucose, cholesterol) were uniformly normal 
for strongly healthy patients (as they are free from chronic disease 
risk) and therefore did not account for the additional variability in 
their longevity scores. In contrast to these indicators, we observed low 
neutrophil, low ALP and a high ratio between microcytic and hypochro-
matic red blood cells as indicative of a high longevity score in strongly 
healthy individuals. Interestingly, for some clinical markers, medium 
levels were associated with a high longevity score in strongly healthy 
individuals, even though their even higher levels were associated with 
chronic disease risk. For example, medium (but not low) body mass 
index (BMI), creatinine in the 60th to 50th centile (but not lower) or 
liver enzymes (ALT) at the 60th percentile (but not lower) were all cor-
related with a high longevity score, while their much higher values were 
linked with chronic disease risk. For some of these healthy aging indica-
tors, in particular low neutrophil levels33–35, earlier reports suggested 
a potential link with healthy aging. For other markers, some link with 
an effect described before as ‘integrated albunemia’ was likely36. Over-
all, the model we derived leads to a somewhat unexpected hierarchy 
of health levels in individuals who are currently considered strongly 
healthy. Importantly, we used patients with at least a 10-year follow-up 
to ascertain the models’ disease and survival predictions (which were 
based only on 5 years of data) (Extended Data Figs. 6c and 7), showing 
predictive value even for individuals who were considered strongly 
healthy at the time of the prediction.

Using longevity scoring in the UKBB and NHANES populations
We used simple feature matching and renormalization (Supplementary 
Note 1 and Supplementary Fig. 1), but no change in model parameters, 
to transfer the chronic disease risks computed on the CHSDB data to 
the UKBB13 and NHANES22 population databases. The CHSDB-based 
longitudinal model accounts for missing data in the patients’ records, 
allowing easier transfer to survey datasets. Also while training our 
longitudinal models relies on available patients’ histories, applying the 
transferred model does not rely on longitudinal data. Our models could 
therefore be used to assess risks for all patients at any age between 30 
and 80 years in the two cohorts. We observed highly reproducible risk 
stratification for chronic diseases (Fig. 5a). Analysis showed that for 
CVD, our scoring scheme provided risk stratification comparable (or 
even better, for example, for age = 65 years) to common risk metrics 
(Extended Data Fig. 8a,b)37–39, even though it was not using some key 
features (for example, smoking history) that are not available or reli-
able in operational retrospective datasets such as the CHSDB one. We 
next transferred the longevity score to the UKBB and NHANES datasets 
using a similar approach. This provided both validation and an oppor-
tunity to test additional survey variables against the longevity score. 
We observed excellent agreement between the longevity score and 
10-year survival in both the UKBB and NHANES (Fig. 5b). Key longevity 
laboratory correlations were reproduced in the UKBB, including low 
neutrophil count, low ALP and high ALT, and creatinine (Supplemen-
tary Fig. 2). As observed in the CHSDB, some of the healthy individuals 
in both populations varied in their longevity scores without evident 

Fig. 4 | The longevity gap: modeling age-related chronic disease impact on 
longevity. a,b, Estimating lifelong disease risk at any age using standard clinical 
data. We extended the long-term longevity model (Fig. 1) by adding a disease 
of interest as the outcome and considering mortality as a competing risk. The 
model includes only 3 years of clinical history per patient to predict how patients 
move between disease risk states in 5-year steps (a). To compute the lifelong 
disease risk, we summed all possible trajectories ending with a disease state (b). 
c, Disease lifelong risk. Lifelong disease risk probabilities in low (bottom 5%, 
blue) and high (top 5%, red) disease risk according to age (x axis) and sex (line 
type). The lifelong risk for disease typically decreases at old age because the 
potential to become sick is proportional to the remaining number of years (to 
reach age 85). d, Lifelong disease risk stratified according to longevity. Disease 

model estimations are shown for patients with high and low longevity scores. 
e, The longevity space. Quantile-normalized longevity scores and disease risk 
for patients not diagnosed with any of the chronic age-related diseases were 
projected using uniform manifold approximation and projection (UMAP). Color-
coded longevity scores over the projection space for patients aged 50 are shown. 
f, Disease risk on the longevity space. Like e, the lifelong disease risk over the 
longevity space has been color-coded for patients at age 50. g, Model features. 
Mean normalized laboratory values according to age (x axis) for key features 
that contribute to a high or low longevity score in strongly healthy individuals 
for whom the potential for all age-related chronic diseases is lower than the 
population median are shown.
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link to known diseases. The correlation of physical activity or body 
fat with longevity scores of healthy individuals was generally nega-
tive, while it was positive for some of the chronic diseases, as expected 
(Supplementary Fig. 3). A high longevity score in healthy individuals 
without chronic disease predisposition was almost independent of 

socioeconomic variables, compared to strong association of these 
variables with chronic disease risk (Supplementary Fig. 4). Together, 
the corroborated longevity scores were remarkably robust in Israeli, 
British and US populations, with substantial inferred predictive power 
for longevity in individuals lacking known disease predisposition.
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Fig. 5 | Longevity scoring in healthy individuals is robust across healthcare 
systems. a, Disease models performance in the UKBB. The 10-year cumulative 
incidence probability estimations (center points) are shown, with death as the 
competing risk for all patients without disease at age 60 (n = 89,124) according 
to the disease risk score (x axis). The error bars indicate the 95% CIs. b, Longevity 
models performance in the UKBB and NHANES. The Kaplan–Meier 10-year 
survival estimates for patients at age 60 or 60–70 in the UKBB/NHANES are  
shown according to the longevity score (x axis), n = 89,124/10,046. The error  
bars indicate the 95% CIs. c, Population distribution according to lifelong 
longevity and disease potential. All patients aged 50 in the CHSDB were clustered 
according to the quantile-normalized longevity score and disease risk. Color-
coded clusters with the number of patients in each cluster (outer annotation)  
and probability of surviving to age 85 (P85, inner annotation) are shown.  
d, Population distribution in the UKBB (like c but for the UKBB data). Clustering 

was performed using precomputed CHSDB clusters and assigning the cluster 
with minimal distance to the cluster centroid. e, Population distribution in the 
NHANES (like d but for the NHANES data), including patients aged 50–60.  
f, Patient 10-year survival according to predisposition groups. The 10-year 
Kaplan–Meier probability estimates for survival (center points) for males 
(left, n = 81,872) and females (right, n = 110,528) are shown according to the 
predisposition groups shown in c. The error bars indicate the 95% CIs. g, Parental 
survival according to child longevity and disease potential clustering. Kaplan–
Meier estimates for median age at death of the patients’ parents according to 
the patients’ predisposition groups (males, n = 27,023/14,096/54,737/23,109; 
females, n = 48,305/32,170/50,966/21,376) for clusters C1, C3, C10–C14 and C15) 
are shown. The error bars indicate the 95% CIs. h,i, As in f,g for the UKBB (n = 13,157 
males and 18,765 females). Males and females combined, given a smaller sample 
size: n = 26,355/8,749/21,537/5,111 parents for clusters C1, C3, C10–C14 and C15.
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Consistency of longevity potential across populations
To organize the multivariate disease and longevity potential across an 
entire population, we grouped 50-year-old CHSDB patients according 
to their scores (Fig. 5c and Methods), deriving 15 groups that varied 
from ultra-healthy (C1) to severe multi-disease risk (C15). Cluster-
ing was based only on the scores, dissecting a continuum of risks 
into groups for simpler analysis, but not implying that each class 
is completely separate from all other classes in the continuum. We 
then projected the UKBB and NHANES populations over the same 
distributions (Fig. 5d,e). The degree of strong disease predisposition 
at age 50 varied between populations, with 10% of the population in 
C15 (multivariate high risk) for the CHSDB and NHANES, and only 
4% for the UKBB volunteer population (note that the latter is not an 
unbiased sample of the entire UK population). In all populations, we  
observed a robust grouping of individuals lacking any disease risk 
into ultra-healthy (C1, 16%, 17% and 22% of the populations) and 
healthy with lower longevity score (C3, 10%, 5% and 7% in the CHSDB,  
NHANES and UKBB, respectively). These two groups represented 
a universal and unappreciated variation in longevity potential of 
healthy individuals.

The longevity potential of patients predicts the parental 
lifespan
Analysis of the CHSDB and UKBB populations provided evidence for 
heritability consistent with the reported heritability of the clinical 
markers defining these risks40–42, but low socioeconomic correlation 
with the longevity potential of healthy individuals (Extended Data 
Fig. 9a,b and Supplementary Fig. 4). As a further, stricter test for the 
longevity potential of healthy individuals and its heritability, we used 
data on parental mortality in the CHSDB and UKBB to compare the 
observed lifespan of the parents of individuals classified into the 15 
predisposition groups outlined above. Remarkably, parents of C1 
males showed a 1-year increase in lifespan in the CHSDB (P = 2.7 × 10−14; 
Fig. 5f,g) and UKBB (P = 6.2 × 10−8; Fig. 5h,i), compared to parents of 
C3 male patients. This was despite the fact that individuals in both 
groups lacked measurable predisposition toward the main chronic 
diseases. For males in the high disease risk group (C15), the decrease 
in the parents’ lifespan was up to 5.6 years in the CHSDB and 4 years 
in the UKBB. Data on females’ parents showed similar trends but with 
weaker intensity for the C1/C3 separation, suggesting that estimation 
of the longevity score in middle-aged females lacks precision because 
of perimenopausal and other effects. Evidently, because genetic trans-
mission is incomplete and heritability only partially accounts for the 
longevity effects we characterized, the 1-year increase in lifespan must 
represent only part of the expected lifespan increase for individuals 
with a high longevity score. Taken together, using standard labora-
tory tests, the longevity score stratifies longevity potential with an 
impact that is associated with at least a 1-year increase in lifespan 
that is independent and additive to the longevity impact of known 
chronic diseases.

Longevity genetic association is independent of disease risk
Longevity, as the ultimate multifactorial phenotype, is linked with 
many genetic variants. We used our inferred predisposition groups 
C1–C15 in the UKBB populations to reinterpret such a link given a rich 
multivariate clinical context. We studied the allele frequencies (AFs) 
and parental survival (PS85, defined as the probability of parents to 
reach age 85) for 26 curated longevity variants previously defined 
through meta-analysis of the UKBB and multiple genome-wide asso-
ciation studies (GWAS)43,44. For each single-nucleotide polymorphism 
(SNP) in this set, we tagged alleles as ‘good’ and ‘bad’ according to the 
parental survival statistics and assigned each individual with a ‘good’ 
or ‘bad’ variant status accordingly (changing the homozygosity or 
heterozygosity criterion given the AFs; Methods). As shown in Fig. 6a,  
21 of the 26 loci were indeed significantly associated with parental 

survival over the entire White British population (Methods). Over 
half (15 of 26) of the variants showed higher AFs in the chronic disease 
predisposition groups (C10–C15), compared to the strongly healthy 
groups (C1, C3), showing that these variants may be contributing 
to longevity, at least in part through predisposition to each known 
chronic disease (see Extended Data Fig. 9c for the complete C1–C15 
stratification). Nevertheless, 17 of 26 variants showed a significant 
link with parental lifespan even when restricted to patients in the 
strongly healthy groups (C1 + C3). Even more interestingly, ten loci 
(HLA-DQA1, LDLR, LINC02227, APOE, RAD50, CELSR2, KCNK3, EPHX2, 
CHRNA3, MICA) showed specific enrichment in C3 patients (low dis-
ease predisposition but decreased longevity). This is suggestive of 
a link with longevity etiologies that are independent of the chronic 
disease spectrum.

Lifelong risk scores for longevity variant stratification
Beyond the support for the genetic basis of our longevity score, 
the data illustrate the complex interplay between the multifacto-
rial nature of aging and the pleiotropic effects of many variants on 
longevity-related etiologies. In some cases, such pleiotropic effects 
may even be antagonistic. For example, the strongest longevity vari-
ant in the data, APOE, is linked with reduced parental survival within 
either the healthy or disease-predisposed groups. However, its AF 
is paradoxically lower in the disease-predisposed groups C10–C15. 
Longevity variants in the APOE locus therefore confer an overall posi-
tive healthy aging phenotype (for example, possibly because of a 
reported link with neurodegenerative processes) despite having a 
negative longevity effect by increasing the risk to common chronic 
diseases (Fig. 6b).

Variant association is also classically used in models aimed at 
inferring causal relationship in clinical features45; however, gaining con-
fidence regarding such an interaction is hampered by the pleiotropic 
nature of most genes and the complex correlation among most clinical 
features. We analyzed a variant in the ALPL locus with strong ALP asso-
ciation (Extended Data Fig. 10a) to demonstrate how these challenges 
can be approached given our model. First, we showed that the variant 
is associated with reduced parental lifespan (Extended Data Fig. 10b). 
This may suggest a direct and causal effect through the modulation of 
ALP levels, but can also represent an indirect effect through any chronic 
disease. We computed an ALP-free longevity score from which ALP data 
were omitted and tested the model impact on parental survival when 
combined with either the genetic ALPL variant or the phenotypic ALP 
levels (Extended Data Fig. 10c). The data suggested (but provided only 
weak statistical support, P < 0.018) that the ALPL gene variant is corre-
lated with differential parental survival in patients with a high ALP-free 
longevity score. This type of analysis may be used to infer a causal role 
for phenotypic ALP levels in promoting healthy aging, although the 
underlying mechanism is unknown.

Finally, we screened for additional variants using a GWAS on the 
longevity score with the five disease predisposition scores as confound-
ers (Extended Data Fig. 10d,e). Variants identified in this way can be 
linked with etiologies driving longevity that are not entirely depend-
ent (or even independent) of the chronic disease mechanisms. Using 
fine-mapping46, we retained 122 loci with P < 5 × 10−8 (Supplementary 
Table 1); out of these, we selected ten variants that were not previously 
reported, for which the association with a lower longevity score was 
matched with a reduction in parental survival (q < 0.1; Fig. 6c). For 
example, we observed a variant in the SHROOM3 locus, previously 
linked with neutrophil actin dysfunction and additional diseases, show-
ing increased AF in C3 and a matching reduction in parental survival. 
ADH1B, a variant linked with addiction, showed a similar trend in patient 
groups C1 and C3 and a further increase in AF for the disease predis-
position clusters C10–C15. Together, these analyses demonstrate the 
importance of taking into account a multivariate disease risk model 
when running and interpreting GWAS.
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Fig. 6 | Prioritizing longevity gene variants using multivariate disease risk 
modeling. a, AFs and parental survival statistics (percentage survival of parents 
at age 85), stratified according to predisposition groups (Fig. 5), for previously 
described longevity variants. Data represent the difference between the ‘bad’ 
(showing poorer parental survival) and ‘good’ alleles. The single asterisk 
indicates a parental survival difference with q < 0.05. b, Parental survival (top) 
and AFs (for the ‘bad’ allele, bottom) for six selected longevity alleles. The error 

bars indicate the 95% CIs. c, We detected variants with a significant association to 
the patients’ longevity score, with chronic disease lifelong risk scores introduced 
as confounder variables. Parental survival and AFs in the predisposition groups 
for ten of these variants are shown; they showed a consistent and significant link 
with parental survival. n = 88,554/35,721/41,872/332,791 patients in clusters C1, C3 
and C10–C15, all with SNP data and parental survival (b,c). The error bars indicate 
the 95% CIs.
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Discussion
We introduced a machine learning approach to quantify the healthy 
aging potential and lifelong risk for major chronic diseases in human 
populations. The approach is based on stitching together age-specific 
short-term (5-year look ahead) predictive models, each using at most 
3 years of clinical history into long-term trajectory models describing 
aging over many decades. Focusing on healthy individuals and the 
dynamics of health state within them, we computed for patients at any 
age a longevity score expressing the likelihood of survival through to 
age 85. In parallel, we inferred the lifelong risk models for five key dis-
ease classes, computing for patients at any age their total probability of 
disease onset by age 85. By combining our models for healthy aging and 
major chronic diseases, we revisited classical questions on the interplay 
between healthy aging and chronic disease predisposition using a lon-
gitudinal and quantitative risk-based approach. We demonstrated that 
the models we derived based on longitudinal coverage in the CHSDB 
can be transferred with minimal changes to other populations in which 
no longitudinal coverage is available, such as the UKBB or NHANES 
cohorts. This makes inferences using our models readily available in 
essentially any modern EHR database, facilitating extension of current 
machine learning approaches beyond short-term predictions.

Assessing patient disease and mortality risk has been described 
in many studies using either classical (for example, ref. 47) or modern 
(for example, ref. 48) machine learning approaches. These models 
predict the endpoint (for example, mortality) using current patient 
data and suggest different solutions to account for the heterogeneity 
of the population and sparsity of data, and for modeling multivariate 
effects. The strategy in this study is reversed: rather than modeling the 
risk for a detrimental outcome directly, we aimed to predict the prob-
ability of maintaining the optimal health state over time. This gave rise 
to a model that better separates individuals with truly excellent health 
from normally healthy individuals and allows for the analysis of the 
features that correlate (and perhaps contribute) to the maintenance 
of such a state over prolonged time periods.

Our longitudinal multivariate model unexpectedly showed that a 
substantial variation in healthy aging potential can be predicted in indi-
viduals lacking any quantified risk for the spectrum of major chronic 
diseases. This variation was quantified using currently unappreciated 
signatures in common clinical markers. Interestingly, these signatures 
involve values well within the normal ranges11 but provide predictive 
value even for young and middle-aged adults who are completely 
healthy based on all current definitions. This result was replicated 
in Israeli, British and US populations. Our model also identified all 
classical risk factors, such as BMI, glucose and creatinine, which are 
statistically linked with a potential for future development of specific 
diseases such as CVD, T2D and CKD. However, the additional healthy 
aging signatures we quantified are not (anti)correlated with any of 
these diseases or with future risk for their incidence while still predict-
ing healthy aging in the long run.

After controlling for the well-described age-related chronic dis-
eases, we aimed to understand the physiological basis of the link 
between healthy aging and the clinical markers we identified as pre-
dicting it. Within the complex multivariate score our model, low neu-
trophil levels, low ALP levels and medium (not high but also not low) 
levels of liver enzymes and creatinine stood out as the most predic-
tive. A common hypothesis suggests that constitutive inflammation, 
which may be mediated or reported by a higher level of neutrophils, 
is linked with accelerated aging, providing a possible explanation 
for the neutrophil component in our model. The other markers are 
more puzzling, classifying individuals with well-balanced metabolic 
activity as more likely to progress well toward a healthy aging trajec-
tory36,49. Poor maintenance of body weight and emergence of a frail 
phenotype are classical aging phenotypes for older adults. However, 
the predictive value of our model is already observed for relatively 
early ages and long before frailty is observed. This ‘temporal hierarchy’ 

suggests that these factors causally promote healthy aging rather 
than being caused by it.

Analysis of parental lifespan in groups of individuals classified by 
our model score provided a strong validation of the model’s predictive 
power. Even when excluding all patients that are at risk for any of the 
age-related chronic diseases we modeled, we quantified a lifespan 
increase of at least 1 year for the parents of individuals with good lon-
gevity estimates compared to matched individuals with poor longevity 
estimates. This result is again transferred seamlessly from the CSHDB 
population to the UKBB cohort. Parent–child lifespan conservation 
was compatible with narrow sense heritability analysis of the disease 
risks and longevity scores in the CSHDB dataset. This supports the 
notion that a considerable heritable component is driving the healthy 
aging phenotype, beyond the well-established heritable contribu-
tion of age-related chronic disease predisposition. We suggest that 
genetic analysis of longevity and healthy aging can be enhanced by 
considering the risk models we have introduced in this study, general-
izing observations in smaller cohorts manifesting an ultra-longevity 
phenotype50–52 or non-longitudinal models for statistical decoupling 
of coarse-grained disease phenotypes53–56. Such genetic analysis will 
have to consider the remarkable pleiotropy of longevity loci, which 
may contribute antagonistically to disease predisposition affecting 
overall longevity, as demonstrated for the APOE locus. Considering 
such pleiotropy and the multifactorial nature of the aging process are 
essential for its understanding.

Our model’s predictive performance over long timescales is still 
severely limited by data availability. On the one hand, there are sce-
narios in which more routine measurements of already accessible 
clinical markers, such as sugar levels in younger individuals, could 
improve the potency of risk estimation across the population. On the 
other hand, for some highly prevalent age-related diseases, the main 
problem is in quantifying the disease in its early stages, even before 
finding markers predicting its progression. This is most notably rel-
evant for Alzheimer’s disease and the dementia spectrum, on which 
our longitudinal model fails almost completely. This failure is most 
probably due to a lack of effective quantification of the disease in 
its early or even later stages. When the outcome is not defined, or is 
defined in a biased fashion, the models cannot derive effective risk 
estimation and extend longitudinally. As additional modalities of 
clinical profiling and tracking are being adopted or considered57, for 
example, by adopting aging clocks58,59 and new molecular profiling 
tools, we hypothesize that the potency of multivariate, multi-disease 
longitudinal models can increase substantially. Nevertheless, the 
performance of any long-range patient trajectory model, even one 
with unlimited access to patient profiling, is bound by the determinism 
of the clinical trajectory itself. In some cases, the state of a patient at 
a younger age is simply not predictive of later disease onset. This can 
be due to heavily stochastic disease etiology, as in cancer, or a strong 
behavioral and environmental involvement where a patient’s current 
state is only partly indicative of their future behavior. The currently 
available data provide very limited socioeconomic and behavioral 
profiling, particularly over extended periods. Future availability of such 
information together with longitudinal EHRs is crucial for decoupling 
environmental factors, predisposition to specific chronic diseases and 
overall healthy aging. But even when their performance is bound, the 
fact that our models use all clinical data that are available in a modern 
healthcare system to systematically model disease risks and healthy 
aging prospects, provides a comprehensive estimation of the value 
of current clinical markers in preventive and preemptive diagnosis, 
and highlight the processes in which more can and should be done.

The geroscience hypothesis aims to identify aging processes that 
can be targeted before the emergence of age-related diseases. As shown 
in this study (Fig. 1), the analysis of 80-year-old individuals identified 
a truly remarkable spectrum of health potential established late in 
life and readily quantifiable using common laboratory results. The 
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current definitions of chronic age-related diseases account for only a 
small part of this spectrum, disregarding the processes that generate 
tremendous variation between individuals who are considered healthy 
by any current definition. Our computational models can capture 
some of this variation at younger ages. Much more work is needed to 
identify, characterize, monitor and treat the physiological deteriora-
tion processes that drive such variation independently of textbook dis-
eases. Redefining a quantitative ‘healthy’ state is essential for enabling 
rational development of interventional or therapeutic approaches 
that will ultimately increase the probability of patients to establish and 
maintain a truly excellent health state throughout their adulthood.

Methods
Ethics
The CHS institutional review board approved this study (ref. no. 0158-
16-COM2); the study was deemed exempt from the requirement of 
informed consent on the basis that the retrospective historical data 
were anonymized and could not be linked to any individual patient.

Overview of the Markovian lifelong disease predisposition 
modeling approach
The algorithm implements a reverse-forward process. It starts with the 
inference of a short-term model for patients at age 80 (see below the 
longevity prediction model for age 80), computing the risk for a clinical 
outcome of interest by age 85 using all available data collected from 
age 77 and before 80. The resulting risk scoring function can then be 
used for any patient in the 77–79 age range, even when the outcome in 
ages 80–85 is unavailable (that is, it is censored). We can then analyze 
patients at age 75, with clinical data collected from age 72 and before 
age 75, to predict a generalized outcome defined by either an observa-
tion of the clinical outcome before age 80 or the emergence of high risk 
for the future onset of this outcome at age 80. The latter is calculated 
using the model already computed in the previous stage for age 80, 
including all patients with available clinical data from age 77 and before 
age 80 (Extended Data Fig. 2e and Fig. 1d). In other words, we stretched 
the longitudinal scope of the data by extrapolation on inferred high-risk 
patients. By iterating this approach backward over the aging spectrum 
in steps of 5 years, we created a series of generalized outcomes repre-
senting cumulative risk, and predictive models for them for each age 
group. Importantly, once inferred, these models do not require more 
than 3 years of history for a patient at any age and can handle high levels 
of missing data even within this narrow time window. This concludes 
the reverse part of the algorithm. For the forward part, we assembled all 
5-year models into a Markov chain while accounting for patients going 
out of coverage, missing clinical data and patient mortality. Using the 
composite model, we summed up the probabilities of the outcome over 
all age ranges, thereby estimating the lifetime outcome probability 
for any patient at any age, using extrapolation from a minimal clinical 
history (Fig. 1d right). The Markovian lifelong disease predisposition 
short-term prediction models and the combined Markov risk models 
were computed using the mldpEHR R package available at https://
github.com/tanaylab/mldpEHR.

Longevity prediction model for age 80
We trained a model to classify patients according to their survival 
through to age 85.

Patients were included according to the following criteria: 
age = 80; at least one blood test in the previous 3 years (between ages 
77 and 79), using white blood cell count (WBC) as a proxy; known out-
come—dead within 5 years or at least 5-year follow-up. Fivefold cross-
validation gradient boosting tree models were trained with features 
including sex, average laboratory values in the previous 3-year time 
window for 92 of the most common labs (Supplementary Table 3); and 
previous chronic diseases with a significant effect on mortality (Sup-
plementary Table 2, previously defined in ref. 11). Patients who did not 

die before age 85 were considered positive cases. Training was done 
using the xgboost60 v.1.2.0.1 with gbtree booster, and the binary:logistic 
objective using the following hyperparameters: nrounds = 1,000; 
subsample = 0.7; max_depth = 3; colsample_bytree = 1; eta = 0.05; 
eval_metric = auc; min_child_weight = 1; gamma = 0.

Inferring longevity models for age younger than 80
In an iterative process, in 5-year intervals, younger age longevity clas-
sification models were trained using the scores of the older age models 
(Extended Data Fig. 2e). For the model of age = x (Mx), patients were 
included according to the following criteria: age = x; at least one blood 
test in the previous 3 years (between age x−3 and x, not including), using 
WBC as a proxy; known outcome—dead within 5 years, or available 
longevity score from age model x + 5.

Patients were considered as positive cases if their score was in 
the top 5% of the older age model Mx + 5 and they did not die within 5 
years. The training procedure was as described in the previous section 
(longevity for age 80).

Estimating the longevity potential
Given the age series of longevity prediction models, we constructed the 
Markovian lifelong longevity risk model using a reverse-forward process. 
The input to the risk model were the longevity scores computed for all 
patients in each age model, quantile-normalized according to age and sex.

State space
For each age (a) and sex (s), 20 states were defined according to the 
5% quantile scores (q); an additional state was defined representing 
patients who were missing laboratory tests and could not be assigned 
a longevity score. Two possible outcomes states (for age 85) were 
defined: alive and dead. The Markov state space was defined as:

S =
⎧⎪
⎨⎪
⎩

Sa,s,q|

a = {30, 35,…80}

s = {male, female}

q = {1,… 20,missing}

⎫⎪
⎬⎪
⎭

∪ {alive85,dead}

Starting at age 80, we computed the transition matrix T80,85 from 
states S = {S80,s,q} to the two outcome states {alive85, dead} by grouping 
the entire population of patients aged 80 and for each state, estimating 
the probability for death using cumulative incidence functions from 
competing risk data (cmprsk v.2.2-11) that support time censoring. 
Continuing in a similar fashion for younger ages, we computed the 
transition matrices

Ta,a+5={P(Sa+5,s,q)| Sa,s,q)}∪{P(dead)|Sa,s,q}

where we assumed that the ‘dead’ state is absorbing.
The probability of survival through to age 85 can then be computed 

if we multiply all transition matrices (from the age of interest):

Ta,85 =
80
∏
a

Ta,a+5

Chronic disease cohort definition in the CHSDB, UKBB and 
NHANES
T2D, CKD, COPD, CVD and LD were defined in the CHSDB according to 
the inclusion and exclusion criteria as specified in Fig. 3.

In the UKBB, chronic diseases were defined based on diagnosis 
codes (International Statistical Classification of Diseases and Related 
Health Problems, 9th (ICD-9) and 10th (ICD-10) revisions) in the show-
case fields 41270 and 41271, primary care and hospital inpatient out-
come data, first occurrences of medical conditions and self-reported 
questionnaires.
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Diagnoses codes for T2D: ICD-9: 250; ICD-10: E10, E11, E12, E13, E14. 
Diagnoses codes for CKD: ICD-9: 585; ICD-10: N18. Diagnoses codes for 
COPD: ICD-9: 491, 492, 506.4, 494, 496; ICD-10: J41, J42, J43, J44, J47. Diag-
noses codes for CVD: ICD-9: 410, 411, 412, 413, 414, 427.3, 427.4, 427.5, 
428, 429.6, 429.7, 433, 434.0, 434.9, 435.9, 436, 437, 440, 441, 442; ICD-10: 
I20, I21, I23.0, I24, I25, I46.9, I48.9, I49.0, I50, I51.0, I51.2, I63, I65, I66, 
I67, I70, I71, I72, G45.9. Diagnoses codes for LD: ICD-9: 571, 573.3, 573.8, 
573.9, 576.8; ICD-10: K70, K73, K75.9, K76.1, K76.89, K76.9, K83.5, K83.8.

Disease prediction models for age 80
A binary classification model was trained for each disease separately, 
to classify patients according to their disease status at age 85. Patients 
were included according to the following criteria: age = 80; at least one 
blood test in the previous 3 years (between ages 77 and 79), using WBC 
as a proxy; known outcome—disease within 5 years or at least a 5-year 
follow-up; patients not diagnosed with the disease at a younger age 
(younger than 80 years).

Patients were considered as positive cases if they were diagnosed 
with the disease before reaching age 85. The training procedure was as 
described in previous sections (longevity for age 80).

Inferring disease models for ages younger than 80
In an iterative process, in 5-year intervals, younger age disease clas-
sification models were trained using the scores of the older age mod-
els (Extended Data Fig. 3a). For the model for age = x, patients were 
included according to the following criteria: age = x; at least one blood 
test in the previous 3 years (between age x − 3 and x, not including), 
using WBC as a proxy; known outcome—disease within 5 years or avail-
able score from age model x + 5; patients not diagnosed with the disease 
at younger age ( younger than x).

Patients were considered positive cases if they were diagnosed 
with the disease within 5 years or had a high score in the age model x + 5. 
To determine the threshold on the score to be considered, we wished to 
balance the number of cases observed in the immediate 5-year period 
with the future number of cases. To this end, we computed the expected 
number of patients who will be diagnosed with the disease by age 85 
recursively using a time-to-event model (cmprsk v.2.2.11) with death 
as a competing risk to estimate the probability of becoming sick within 
5 years, considering the probability of having laboratory test data:

Nsick (80,n) = n × P (sick85|age = 80)

Nsick (age < 80,n) =

n × P (sick age + 5|age) +

Nsick (age + 5,n × (1 − P (sick age + 5|age) − P (dead age + 5|age) ) )

where n is the total population size at that age. Given this estimation, 
we considered the N sick patients with highest risk scores as positive 
cases (Extended Data Fig. 3a). Model definition, features and training 
are as defined for the disease model age = 80.

Lifelong disease risk computation
The disease risk Markov model was computed for each disease sepa-
rately, like the longevity risk computation described above. The input to 
the risk model are the disease scores computed for all non-sick patients 
in each age model, quantile-normalized according to age and sex.

State space
For each age (a) and sex (s), 20 states were defined according to the 5% 
quantile scores (q); an additional state was defined that represented 
patients who were missing laboratory tests and could not be assigned 
a longevity score. Four possible outcomes states (for age 85) were 
defined: sick; dead; sick&dead; healthy. The Markov state space was 
defined as:

S =
⎧⎪
⎨⎪
⎩

Sa,s,q|

a = {30, 35,…80}

s = {male, female}

q = {1,… 20,missing}

⎫⎪
⎬⎪
⎭

∪ {sick, sick&dead,dead,healthy85}

Starting at age 80, we computed the transition matrix T80,85  
from the states S = {S80,s,q}  to the four outcome states 
{sick, sick &dead,dead,healthy85} by grouping the entire population of 
patients aged 80 and for each state, estimating the probability for death 
using the cumulative incidence functions from competing risk data 
(cmprsk v.2.2.11), supporting time censoring. Continuing in a similar 
fashion for younger ages, we computed the transition matrices:

T a,a + 5 = {P (Sa+5,s,q) | Sa,s,q)} ∪ {P (sick) | Sa,s,q)}

∪ {P (sick&dead) | Sa,s,q)} ∪ {P (dead) | Sa,s,q)}

∪ {P (sick) | sick)} ∪ {P (sick&dead) | sick)}

where we assumed that the ‘dead’ states are absorbing:
Ta,a+5(dead|dead) = 1, Ta,a+5(sick &dead|sick &dead) = 1 and that there 

is no transition from the ‘sick’ to the healthy states.
The probability of disease through to age 85 was then computed if 

we multiplied all transition matrices (from the age of interest):

Ta,85 =
80
∏
a

Ta,a+5

We can then sum the probabilities of transitioning to a sick or 
sick&dead state at age 85, from any state (for example, score quantile) 
of interest.

Handling missing data
The CHSDB provides data on patients based on their routine clinical 
management. Importantly, for patients older than 50 years, the fre-
quency of sampling patients’ laboratory tests is increasing rapidly. For 
example, for 92.9% of females and 88.1% of males, at age 60 the data 
provide information on at least a complete blood count in the last 3 years; 
for 90.6% females and 85.8% males, we also have data on liver enzymes. 
When training the 5-year Markovian lifelong disease predisposition score 
models, we considered missing data as a possible value for each param-
eter because it can provide information on the patient state; for example, 
not having a measurement may be indicative of a healthier state. Also, 
XGBoost supports missing values60. However, we omitted patients for 
which a WBC laboratory test was missing, assuming it to be a good proxy 
for the entire complete blood count panel. When combining the scores 
into the Markovian longitudinal model, we modeled patients without 
any interaction with the healthcare system as a special state (see above).

When transferring our model to any system of interest, missing 
features were considered in the same way as in the original CHSDB 
model. This may have introduced some loss of accuracy when the 
underlying cause for missing a sample during standard clinical manage-
ment is different from the cause of missing data in a survey. However, 
our validations in the UKBB and NHANES suggested that this was a 
relatively minor effect, possibly because the level of missing data in 
the CHSDB is low to begin with.

Predisposition UMAP projection
For each age, we identified patients who were not diagnosed (when 
at the respective age) with any of the chronic diseases. We then used 
disease scores (T2D, CKD, COPD, CDV, LD) and quantile-normalized 
longevity scores, and applied two-dimensional projection using UMAP 
with umap v.0.2.7.0 with the following parameters: n_neigbors = 10; 
min_dist = 0.3 (Fig. 4).

To improve the alignment between age models, the projection was 
x and y axis-oriented at age older than 65 according to diabetes scores 
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at age 65, by minimizing the sum of squared differences between the 
projection and a linear reference model using x and y to predict the 
diabetes score.

Patient predisposition clustering
For patient predisposition clustering, we extracted disease risks (T2D, 
CKD, COPD, CDV, LD) and quantile-normalized longevity scores for all 
patients at age 50. We ran k-means clustering on these six variables into 
15 clusters using tglkmeans v.0.3.4 (Fig. 5).

UKBB dataset
The UKBB recruited 500,000 volunteers in England, Wales and Scot-
land between 2006 and 2010 (refs. 13,61). Health data include biomark-
ers collected on recruitment, online questionnaires on health status 
and links to external health-related records, including death, cancer, 
hospital admissions and primary care records. Genetic data include 
array genotyping for practically all participants. The data used in this 
study were obtained from the UKBB through application no. 64658.

NHANES dataset
Data from the NHANES, a dataset of representative, noninstitutional-
ized US residents, included anthropometric measurements, blood 
biomarker levels, dual-energy X-ray absorptiometry measurements, 
self-reported medical history and demographics. In-depth details of the 
survey and sampling procedures can be found on the Centers for Dis-
ease Control and Prevention’s official NHANES website (www.cdc.gov/ 
nchs/nhanes/index.htm). Data were collected for individuals aged 
25–85 from the surveys conducted between 1999 and 2016. Individuals 
with a missing complete blood count were excluded from the analy-
sis. Participant death event data were extracted from the National 
Center for Health Statistics website (www.cdc.gov/nchs/data-linkage/
mortality-public.htm), with mortality data linked from the National 
Death Index up to 31 December 2019.

Projection of CHSDB clustering in the UKBB and NHANES
We applied clustering as performed in the CHSDB. For cluster labeling, lon-
gevity and disease scores for each individual were evaluated with reference 
to the cluster centroid generated on the CHSDB population for patients 
aged 50. Patients were assigned to the cluster with minimal distance.

Longevity and disease scores GWAS
We used the UKBB cohort, which contains 487,203 whole-genome 
imputation from genotyped individuals (v.3)13.

We restricted the analysis to 13,791,467 variants quality-controlled 
by the Neale laboratory (https://github.com/Nealelab/UK_Biobank_
GWAS#imputed-v3-variant-qc). All quality-controlled variants had 
an INFO score greater than 0.8, a minor allele frequency greater than 
0.001 and a Hardy–Weinberg equilibrium P > 1 × 10−10.

GWAS participant inclusion criteria
To define a genetically White British ancestry, we selected 338,042 par-
ticipants who were both self-identified as British and were verified using 
a principal component analysis (PCA) of their genotypes. Briefly, we 
performed PCA with 20 principal components over 256,630 SNPs that 
were clumped using bed_clumping from the bigsnpr package (v.1.9.11)62 
and were not part of long-range linkage disequilibrium regions63. We 
then trained an xgboost60 model to predict ‘British’ ancestry from the 
20 principal components and filtered participants for which the model 
score was less than 0.5. We further restricted our analysis to participants 
without second-degree relatives (KING kinship < 2-3 5) and who self-iden-
tified themselves as White British in the questionnaire (field 21,000).

Phenotype definition and GWAS
For each participant with White British ancestry, we computed the 
longevity score and five disease scores (CVD, CKD, COPD, T2D, LD) 

at the closest time point to the age of 60. For the longevity score phe-
notype, we removed participants older than 75 years. Each score was 
then inverse-rank-normalized; we used the big_unvLinReg function 
from the bigstatsr R package (v.1.5.6)62 to fit a linear regression model 
predicting each score separately, predicting the mortality score with 
the inverse-rank-normalized disease scores as covariates.

Fine-mapping
We filtered the SNPs for P ≤ 5 × 10−8 (13,177 loci) and used polyfun46 and 
susieR (v.0.11.92) to perform functionally informed fine-mapping and 
derive the posterior probabilities for 3-Mb windows, allowing up to five 
causal variants per window. We then selected all loci with posterior 
inclusion probability (PIP) of 0.5 or greater together with the locus 
with the highest PIP in 1-Mb windows.

Heritability and polygenic risk scores
h2
g  was computed using linkage disequilibrium score regression64 on 

the summary statistics of the mortality score GWAS with and without 
disease covariates, excluding SNPs on the X chromosome.

Polygenic risk scores were computed using least absolute shrink-
age and selection operator regression (bigSpLinReg function of the big-
statsr package) on every fine-mapped SNP with a PIP of 0.1 or greater.

SNP allele orientation according to parental survival
For each variant of interest, we classified homozygous and heterozy-
gous patients and tested their parents’ survival at age 85 using sur-
vminer v.0.4.9. We then classified the ‘bad’ allele as the one linked with 
a lower parental lifespan. Figure 6 compares parental survival between 
homozygous carriers of the ‘bad’ allele and heterozygous patients, or 
between heterozygous patients and patients who were homozygous 
for the ‘good’ allele, depending on which allele was more frequent.  
P values were corrected for multiple testing using the Benjamini–
Hochberg method.

Statistics and reproducibility
Because this was a retrospective study, no statistical methods were used 
to predetermine sample sizes. Data were collected from EHRs. No data 
were excluded from the analyses. Models were cross-validated on the 
CHSDB (fivefold cross-validation) with random association of patients 
to each fold, controlling for uniform distribution of sex and expected 
outcome. External model validation on the UKBB and NHANES data 
included all patients.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
UKBB data are available to approved researchers via the UKBB Research 
Analysis Platform (www.ukbiobank.ac.uk/enable-your-research/
research-analysis-platform). The longevity GWAS results are available 
at https://gwasresults.s3.ap-south-1.amazonaws.com/gwas_longev-
ity_age_sex_covar_extended.tsv.gz. The NHANES data can be accessed 
at www.cdc.gov/nchs/nhanes/index.htm. Access to the CHSDB data 
used for this study can be made available upon reasonable request, at 
the discretion of the CHS, subject to an internal review by A.T. to ensure 
that participant privacy is protected, and subject to completion of a 
data sharing agreement, approval from the institutional review board 
of CHS and institutional guidelines, and in accordance with the current 
data sharing guidelines of CHS and Israeli law. Subject to receipt of the 
aforementioned CHS consent and subsequent approvals, data sharing 
will be made in a secure setting, on a per-case-specific manner, solely 
for the purpose of reproducing the analysis carried in the research 
paper, as defined by the chief information security officer of CHS. 
Please submit such requests to A.T.
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Code availability
All model training was performed by applying the newly developed 
mldpEHR R package (https://github.com/tanaylab/mldpEHR) on CHDB. 
Laboratory normalization was conducted using the labNorm R package 
(http://github.com/tanaylab/labNorm). The code applied to the UKBB 
for models score computation, patient classification and genetic analy-
sis is available at https://github.com/tanaylab/Mendelson_et_al_2023 
and in Supplementary Software File 1.
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Extended Data Fig. 1 | CHSDB cohort longitudinal coverage. a. Age 
distribution. Shown are the number of patients available for each age  
(x axis) and sex (grey for males, pink for females). b. Patient tracking duration 
distribution. Shown is the cumulative distribution of tracking duration (in 
years) for all patients in the age range of 30 to 85. c. Chronological patient year 

distribution. Shown are the number of patients, 30 < age < 85, in each calendric 
year. Males shown in grey, females in pink. d. Number of lab interactions by age. 
Shown is the percentage of patients at each age according to the number of WBC 
tests performed in the previous 3 years (as a proxy for CBC).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Longevity models. a. High longevity score survival 
curves. Shown are the Kaplan-Meier survival curves for the two best scoring 
longevity groups of patients age 80: top 98–100% (yellow, n = 4474) and 96–98% 
(turquoise, n = 4475). Longevity scores were computed from cross validation 
on CHSDB. Error bars indicate 95% confidence intervals. b. Longevity model 
features. Heatmap of mean lab (y axis) feature value for patients age 80 by 
quantile normalized longevity score (x axis). Lab values were quantile normalized 
per age/sex (11). c. Disease predispositions by longevity. Chronic diseases with 
increased mortality (11) were screened for significant difference as a function 
of longevity score, in estimated 8-year cumulative incidence (with death as 
competing risk) using cmprsk R package. Shown are the top 5 chronic diseases 
for patients age 80 (n = 205839), which show a significant fold-increase in disease 
incidence. Points (center) indicate the cumulative incidence after 8 years for 
the disease for each bin of longevity score (X-axis). Error bars indicate 95% 
confidence intervals. d. Disease/Lab only survival model. Shown are the 5-year 
survival probability estimates (center points) for males (left, n = 92937) and 

females (right, n = 130804) age 80 stratified by longevity score (x axis) according 
to a model using only disease information (red), only lab test measurements 
(yellow) and lab with disease data (blue). Error bars reflect 95% confidence 
intervals. e. Longevity model training. The schematic describes the longevity 
model training process. Starting from all patients at age 80, 5-year longevity 
model is trained using mortality data from patients with 3-year clinical data 
and 5-year known outcome, dead (0, purple) or alive (1, green). Cross validation 
model is applied to all patients with available clinical data, including patients 
with missing outcome. Top 5% scoring patients will be considered as positive 
cases (class=1) for age 75 longevity model. In 5-year intervals, younger age model 
is trained based on 5-year outcome and score from older age model. f. Longevity 
model transition matrices. Shown are the Markov model 5-year transition 
matrices by age (column) and sex (rows) color coded by log2 probability for 
transitioning from score at younger age to score at age+5 years. Score values 
were binned to 20 bins of 5% quantiles. An additional ‘no score’ bin was added for 
patients missing required lab data.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Disease models. a. Disease model training. The 
schematic describes the disease models training process. Starting from all 
patients at age 80, 5-year disease model is trained using onset data with death 
as competing risk from patients with 3-year clinical data and 5-year known 
outcome that were not already sick at age 80, healthy (0, blue) or sick (1, red). 
Cross validation model is applied to all healthy (not already sick with the disease) 
patients with available clinical data, including patients with missing outcome. 
The top scoring patients, according to the expected number of patients to get 
sick between ages 80 and 85 computed from population cumulative incidence 
rates (Dprob(80,85)), will be considered as positive cases (class=1) for age 75 
disease model. In 5-year intervals, younger age model is trained based on 5-year 
outcome and score from older age model. b. 5-year disease prevalence. Shown 
are the inferred 5-year (short-term) disease prevalence by age (x-axis) for low 
disease score (bottom 5%, blue) and high disease score (top 5%, red). Note that 
patients with suspected but unverified T2D were excluded from this analysis. c. 
Alzheimer’s disease. Shown is the 10-year cumulative incidence estimation for 

Alzheimer’s disease (left) and death (right) stratified by disease score (quantile 
normalized) for all patients without disease at age 80 (n = 171827) by disease 
score. Error bars indicate 95% confidence intervals. d. Prostate cancer. Shown 
are the incidence rate, and lifelong risk for prostate cancer disease model.  
e. Lung cancer. Similar to D for lung cancer disease model. f. Model features. 
Shown are mean values by age for key features contributing to prediction of 
lifelong disease risk in high- and low-risk patients (top/bottom five percentiles). 
g. Relative chronic disease risks. Similar to Fig. 4c, patients were separated 
into high / low risk according the disease risk listed in each column. Shown is the 
lifelong risk for diseases listed in each row. h. Distribution of age difference in 
T2D onset and other diseases onset. For each T2D newly diagnosed patient, 
we computed the time difference between T2D onset and the onset of each of 
the other modeled diseases (if these exist). Shown are boxplots of such time 
differences stratified by the age at first T2D diagnosis. The middle line indicates 
the median, box limits represent quartiles, and whiskers are 1.5× the interquartile 
range.
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Extended Data Fig. 4 | MLDP disease models features. Heatmap of mean normalized feature value for patients age 55 for each disease stratified by quantile 
normalized disease risk (x-axis).
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Extended Data Fig. 5 | Multivariate MLDP score UMAP projection. Quantile normalized longevity scores and disease scores were projected via UMAP for each age 
separately. Each dot represents a single patient. Only patients that were not diagnosed with any of the main diseases are shown.
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Extended Data Fig. 6 | Strongly healthy patients. a. Disease predispositions 
by longevity in strongly healthy patients. Similar to Extended Data Fig. 2c for 
patients with low disease risk score for all modeled diseases (<0.5) and that were 
not diagnosed with cancer. N = 157239 age 30, 134983 age 40, 91796 age 50, 86081 
age 60, and 53596 age 70. Error bars indicate 95% confidence intervals. b. Model 
features raw values. Similar to Fig 4g, showing lab raw value (not normalized 

for age and sex). c. High longevity score survival in strongly healthy patients. 
Shown are the Kaplan-Meier 10-year survival curves for the two best scoring 
longevity groups: top 95–100% (yellow) and 90–95% (turquoise) longevity score 
by patients age (x-axis) in strongly healthy patients. N = 23168/ 21778/ 16058/ 
12236/ 8872 patients at age 60/65/70/75/80. Error bars indicate 95% confidence 
intervals.
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Extended Data Fig. 7 | MLDP performance using 10-year follow-ups.  
a. 10-year lifelong risk models. Similar to Fig. 4c for models trained using 10 
years follow-up time. b. 10-year Model features. Similar to Extended Data Fig. 3f  
for models with 10 years follow-up time. c. Comparing 5 y to 10 y disease 
model prediction. Shown are the 10-year estimated cumulative incidence of the 

diseases (rows) for selected ages (columns) stratified by disease score (quantile) 
as computed from 5-year (n = 2176596/ 1935991/ 1597164/ 1789586/ 1469513 for 
age 30/ 40/ 50/60/ 70) and 10-year (n = 2176591/ 1935234/ 1595472/ 1786253/ 
1463280 for age 30/ 40/ 50/ 60/ 70) cross validation models on CHSDB. Error bars 
indicate 95% confidence intervals.

http://www.nature.com/nataging


Nature Aging

Analysis https://doi.org/10.1038/s43587-023-00536-5

Extended Data Fig. 8 | CVD risk model validation. a-b. Framingham and 
Score2 score comparison. Framingham score and Score2 were computed on 
UKBB patients. Shown are the 10-year cumulative incidence estimates (with 
death as competing risk) for CVD by age stratified by score quantiles (x-axis) for 

Framingham and Score2 (dashed lines) and by our MLDP CVD score (solid line). 
N = 49486 / 55673/ 63991/ 82738/ 60391 for patients at age 50/ 55/ 60/ 65/ 70. 
Error bars indicate 95% confidence intervals.
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Extended Data Fig. 9 | Longevity heritability. a. Parent-child correlations 
of disease risk. Disease risks were rank-based inverse normal transformed per 
disease and age. Parent-child correlation was estimated as the slope of linear 
regression between child and average of parents whereby parents were 15 years 
older than offspring. Shown are the estimates of parent-child correlations for 
each disease ± std error, stratified by age (x-axis) computed for male offspring 
(grey), female offspring (pink) and combined (black). n = 430347/ 376405/ 
281894/ 173863/ 93739/ 45398/ 15364/ 2321 for T2D, n = 452927/ 400504/ 303569/ 
189851/ 103988/ 50925/ 17291/ 2642 for CKD, n = 451686/ 398285/ 300855/ 
187115/ 101900/ 49838/ 16914/ 2575 for COPD, n = 456341/ 404196/ 306780/ 

192024/ 105297/ 51745/ 17672/ 2702 for CVD, and n = 452001/ 398489/ 300724/ 
186539/ 101144/ 49292/ 16734/ 2559 for LD at ages 30/ 35/ 40/ 45/ 50/ 55/ 60/ 65. 
b. Parent-child correlations of longevity. Similar to A on patients’ longevity 
score, computed on the entire population (left, n = 536348/ 516826/ 442573/ 
333617/ 238153/ 151855/ 67968/ 14587 for ages 30/ 35/ 40/ 45/ 50/ 55/ 60/ 65) and 
on strongly-healthy offspring individuals (right, n = 229886/ 242594/ 202371/ 
141002/ 91847/ 54022/ 22286/ 4405 for ages 30/ 35/ 40/ 45/ 50/ 55/ 60/ 65).  
c. Longevity snps allele frequencies. Similar to Fig. 6a (right), showing breakdown 
of allele frequencies of all 15 predisposition groups as shown in Fig. 5d.
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Extended Data Fig. 10 | Longevity GWAS. a. Alkaline-phosphotase 
distribution by ALPL genotype. Shown is the cumulative distribution of 
alkaline-phosphotase in patients by genetic variant of ALPL rs149344982 snp. 
b. Parents survival by ALPL variant and alk-phos values. Shown are the 
survival estimates for parents reaching the age of 85, stratified by ALPL snp 
variant (left, n = 181972/4942 for genotype 0/1) and by alk-phos lab values (right, 
n = 70668/108379 with low/high alk-phos). Error bars indicate 95% confidence 
intervals. c. Parents survival by longevity score, excluding alk-phos 
contribution. Similar to B, stratifying also by longevity score, computed using 
a model that did not consider alkaline-phosphatase feature. N = 30945/863 for 
genotype 0/1 in low longevity score, n = 64518/1790 for genotype 0/1 in mid 
longevity score and n = 74586/1983 for genotype 0/1 in high longevity score. 

Error bars indicate 95% confidence intervals. d. QQ (quantile-quantile) plot 
of GWAS on the longevity score with the five disease predisposition scores 
introduced as confounders. Shown are observed versus expected GWAS p-values 
on the –log10 scale. E. Variants with significant association to longevity 
score that were inconsistent with parents’ survival. Shown are the six snps, 
oriented by longevity score (high mortality in red), annotated by beta estimate 
for the longevity model with disease scores as covariates. GWAS for lab tests 
was obtained from Neale lab (65) and significant associations (pval < 5e-8) are 
depicted with red indicating variant high values and blue indicating low values 
inferred from GWAS beta estimates. Cox proportional hazards and Kaplan Meier 
survival estimates was performed on all snps on mother, father and parents 
combined. Also shown are Kaplan Meier (km) p-values.
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