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Abstract

Objectives: To present an application of specification curve analysis—a novel analytic method that involves defining and implementing
all plausible and valid analytic approaches for addressing a research question—to nutritional epidemiology.

Study Design and Setting: We reviewed all observational studies addressing the effect of red meat on all-cause mortality, sourced from
a published systematic review, and documented variations in analytic methods (eg, choice of model, covariates, etc.). We enumerated all
defensible combinations of analytic choices to produce a comprehensive list of all the ways in which the data may reasonably be analyzed.
We applied specification curve analysis to data from National Health and Nutrition Examination Survey 2007 to 2014 to investigate the
effect of unprocessed red meat on all-cause mortality. The specification curve analysis used a random sample of all reasonable analytic
specifications we sourced from primary studies.

Results: Among 15 publications reporting on 24 cohorts included in the systematic review on red meat and all-cause mortality, we
identified 70 unique analytic methods, each including different analytic models, covariates, and operationalizations of red meat (eg, contin-
uous vs quantiles). We applied specification curve analysis to National Health and Nutrition Examination Survey, including 10,661 partic-
ipants. Our specification curve analysis included 1208 unique analytic specifications, of which 435 (36.0%) yielded a hazard ratio equal to
or more than 1 for the effect of red meat on all-cause mortality and 773 (64.0%) less than 1. The specification curve analysis yielded a
median hazard ratio of 0.94 (interquartile range: 0.83—1.05). Forty-eight specifications (3.97%) were statistically significant, 40 of which
indicated unprocessed red meat to reduce all-cause mortality and eight of which indicated red meat to increase mortality.

Conclusion: We show that the application of specification curve analysis to nutritional epidemiology is feasible and presents an inno-
vative solution to analytic flexibility. © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Plain language summary

Randomized trials represent the optimal design for investigating the health effects of medical interventions. They
pose important challenges, however, when it comes to studying the health effects of food and nutrition. Hence, inves-
tigators commonly perform nutritional epidemiology studies. These studies are observational in design, collect infor-
mation from large groups of people, and look for patterns between their diet and their health.

There are, however, concerns about the trustworthiness of nutritional epidemiology studies, exemplified by cases
where they have produced inconsistent results. A growing body of evidence suggests that these inconsistent findings
may be explained by differences in analytic choices (ie, different ways of analyzing the same data). When investigators
analyze nutritional epidemiology studies (and other types of observational data), there are often hundreds of equally
justifiable ways of analyzing the data, each of which may produce different results. Hence, investigators may perform
several analyses and selectively report results for the analysis, that is, most interesting or publishable.

In this study, we apply a novel analytic method—called specification curve analysis—to investigate the effect of red
meat on all-cause mortality. This method involves defining and implementing all plausible and justifiable analytic ap-
proaches for addressing a research question. Investigators can subsequently consider the range of all plausible results
and express more confidence in results that are consistent across all or most justifiable analytic specifications.

Our work suggests that specification curve analysis can be useful for studying the effects of diet on health. It provides
a practical and new way to deal with the challenge of analytic flexibility. Broader application of specification curve

analysis, along with other methods, may improve the credibility of such studies.

What is new?

Key findings

The analysis of nutritional epidemiology data is
complex and there is often limited consensus
among experts about the ideal approach.

While discrepancies in analytic models may result
from differences in opinions regarding the optimal
analytic approach among well-intentioned investi-
gators, some investigators may test many alterna-
tive analytic specifications and selectively report
results for the analysis that yields the most inter-
esting findings.

What this adds to what was known?

We apply a novel analytic method—called specifi-
cation curve analysis—to investigate the effect of
red meat on all-cause mortality. This method in-
volves defining and implementing all plausible
and justifiable analytic approaches for addressing
a research question.

What is the implication and what should change
now?

We show variability in results across plausible an-
alytic specifications.

oThis research demonstrates how specification curve
analysis can be effectively applied to nutritional
epidemiology, providing a practical and innovative
solution to the problem of analytic flexibility.

1. Background

Unlike randomized trials for which investigators typi-
cally register protocols and statistical analysis plans before
the collection of any data, when investigators analyze data
from observational studies, there are often hundreds of
equally justifiable ways of analyzing the data, each of
which may produce results that vary in direction, magni-
tude, and statistical significance [1—7]. The variability of
effect estimates due to alternative analytic approaches is
called ‘vibration of effects’ [2]. Empirical evidence shows
that results from observational studies may be highly
dependent on analytic choices [1—5].

While our empirical and theoretical understanding of the
question being investigated should guide our analytic
choices, our knowledge of complex biomedical and envi-
ronmental systems is limited and even experienced investi-
gators often come to different conclusions about the ideal
analytic approach [4,6,8—13].

While we anticipate that discrepancies in analytic
models often result from differences in opinions regarding
the optimal analytic approach among well-intentioned in-
vestigators, some investigators may test many alternative
analytic specifications and, intentionally or unintentionally,
selectively report results for the specification that yields the
most statistically significant or interesting results or results
that support their preconceived hypotheses. Evidence
shows that investigators’ prior beliefs and expectations in-
fluence their results [5]. In the presence of strong opinions,
investigators’ beliefs and expectations may shape the liter-
ature to the detriment of empirical evidence [5].
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Box 1 Specification curve analysis

When investigators analyze data from observational
studies, they may make numerous potentially
justifiable, but still subjective, analytic decisions on
which the direction, magnitude, and statistical
significance of results may be contingent. Specification
curve analysis may mitigate this issue [26].

Specification curve analysis involves defining and
implementing all plausible and justifiable analytic
methods for investigating a research question.
Investigators subsequently interpret the distribution of
results across all plausible analyses, instead of focusing
on the results of only one analysis.

The implementation of specification curve analysis
involves:

(1) Defining all plausible choices across all aspects of the
analysis. This typically includes:

Criteria for selecting eligible participants for inclusion in

the analysis

Type of analytic model (eg, logistic, Poisson, or Cox pro-

portional hazards models)

Choice of covariates

- Operationalizations of the exposure variable and covariates
(eg, transformations, functional form)

(2

-

Enumerating all justifiable combinations of these analytic
choices to produce a comprehensive list of all the ways in
which the data may be reasonably analyzed. For example,
three unique choices for five aspects of the analysis yield
243 unique analytic specifications (=35).

Implementing all or a random sample of all reasonable
analytic specifications.

Ordering the effect estimates from all analyses based on
their direction and magnitude and presenting results on a
specification curve plot. A specification curve plot reports
the results of all analyses at the top and analytic charac-
teristics at the bottom. The specification curve plot visually
communicates the distribution of results across all speci-
fications and the aspects of the analysis that are most
consequential in influencing the direction and magnitude
of findings.

(3

=

(4

1.1. Nutritional epidemiology

Nutrition is a field particularly amenable to analytic flex-
ibility [14]. Trials investigating the health effects of nutri-
tional exposures are often not feasible and so the
evidence is primarily comprised of nutritional epidemi-
ology studies—observational studies that recruit large
groups of people and look for patterns between diet and
health [15,16].

The analysis of nutritional epidemiology data is complex
and there is often limited consensus among experts about
the ideal approach [17,18]. Sources of analytic flexibility

include the type of analytic model (eg, Poisson regression,
Cox proportional hazards model), choice of covariates (ie,
investigators studying the same question will consider
different adjusting variables [19]), operationalization of
the exposure variable and covariates in the model (eg, trans-
formations, categorizations of continuous variables, func-
tional form), and methods to address missing data, among
others [8]. Investigators often present several sensitivity an-
alyses to investigate the effects of these uncertain analytic
decisions on the results, but the choice of sensitivity ana-
lyses is also subjective and investigators may be more in-
clined to report sensitivity analyses that affirm their
primary findings.

A large body of evidence shows inconsistency in the re-
sults of nutritional studies, some of which may be explained
by analytic flexibility [3,8,20,21]. Such inconsistencies
have eroded trust in nutritional epidemiology and subjected
the field to criticism [22,23]. Nevertheless, nutritional
epidemiology studies continue to play a crucial role in
shaping dietary recommendations and policies, making it
imperative to draw credible inferences from these studies
[14,15,24,25].

1.2. Specification curve analysis

Specification curve analysis—sometimes called multi-
verse analysis—is a novel analytic method that involves
defining and implementing all plausible and valid analytic
approaches for addressing a research question [26] (Box 1).

Through this approach, investigators define all plausible
and justifiable choices for all aspects of the analysis (eg,
choice of model, covariates, etc.), enumerate all justifiable
combinations of these choices to produce a comprehensive
list of all the ways in which the data may be reasonably
analyzed (i.e., analytic specifications), implement all or a
random sample of the valid analytic specifications, and
draw inferences using the distribution of results from all
plausible and justifiable specifications.

Specification curve analysis offers advantages to con-
ventional methods for data analysis. It allows investigators
to draw more credible inferences that are not contingent on
arbitrary analytic decisions and reduces the opportunity for
investigators to conduct many analyses and selectively
report results for analyses that yield the most interesting re-
sults, although it does not completely eliminate subjectivity
in analytic decisions.

While specification curve analysis has been previously
applied in psychology and economics, it has seldom been
applied in nutritional and environmental epidemiology
[5,27].

1.3. Objectives

We apply specification curve analysis to investigate the
effect of unprocessed red meat on all-cause mortality—a
question that has yielded inconsistent results in the
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literature and produced conflicting dietary recommenda-
tions. While this study may provide insights on the health
effects of red meat, the primary objective is to demonstrate
the application of a novel analytic method—specification
curve analysis—to nutritional epidemiology.

A critical limitation of specification curve analysis is the
subjectivity involved in selecting justifiable analytic speci-
fications. Investigators may disagree about justifiable ana-
lytic approaches or may present results of analyses that
are only marginally justifiable. To mitigate this issue, our
analytic specifications were informed by the most common
analytic methods used in previous published studies ad-
dressing the effects of red meat on all-cause mortality.

2. Methods

This study was exempt from institutional ethics review
because it uses secondary deidentified data. We report our
results according to Strengthening the Reporting of Obser-
vational Studies in Epidemiology reporting guidelines for
observational studies [28].

2.1. Analytic specifications

We used a published systematic review of observational
studies that addressed the effect of red meat on all-cause
mortality to identify justifiable analytic specifications for
specification curve analysis [29]. We focus only on obser-
vational studies because randomized trials typically involve
the preparation of detailed protocols and statistical analysis
plans that reduce the analytic decisions available to inves-
tigators. While our objective was to investigate the effects
of unprocessed red meat, we did not anticipate that studies
investigating the effects of mixed unprocessed and pro-
cessed red meat or unspecified types of red meat would
use different analytic methods. Hence, we also reviewed
studies that reported on mixed unprocessed and processed
red meat and unspecified types of red meat.

Two reviewers, working independently and in duplicate,
reviewed the primary studies from the systematic review
and collected data on study characteristics and analytic
methods, including the type of analytic model (eg, Cox pro-
portional hazards model, logistic regression), method of
adjustment for energy (eg, standard model, multivariable
nutrient density model), covariates included in the model,
operationalization of covariates (eg, categorical, linear,
quadratic), subgroup analyses (eg, men vs women), and
the results of analyses, including secondary and sensitivity
analyses, when reported [29]. To ensure that the primary
studies that we used to inform our analytic specifications
addressed similar causal questions and interpreted their
findings similarly, we documented the objectives of the pri-
mary studies and the ways in which the authors interpreted
their findings.

2.2. Study population

The National Health and Nutrition Examination Survey
(NHANEYS) is a repeated cross-sectional probability survey
by the US Centers for Disease Control and Prevention to
characterize the health and nutritional status of the nonin-
stitutionalized, civilian US population [30]. The survey is
based on household interviews and physical examinations
and is representative of the US population by its survey
sampling method. The survey collects demographic, socio-
economic, dietary, and health-related data by household
interview, and medical, dental, physiological measure-
ments, and laboratory tests by physical examination.

For this analysis, we used the continuous 2007—2014
NHANES data linked with the National Death Index [31]
and the Food Patterns Equivalents Database. The National
Death Index is a database established by the National Cen-
ter for Health Statistics that contains information on all
deaths in the United States. We extracted mortality status
from the National Death Index up to December 31, 2019.
The Food Patterns Equivalents Database contains

Box 2 Aspects of the analysis that varied across
analytic specifications

(1) Type of nutrition model

Standard model
Multivariable nutrient density model

(2

-

Operationalization of red meat

- Continuous (per 100 g/day)
Quartiles
Quintiles

(€]

=

Subgroups of interest

All participants

Subgroup based on sex

- All females
- All males
- Both sexes

Subgroups based on age

- Participants aged 20—39 years
- Participants aged 40—59 years
- Participants aged 60—79 years
- All ages

=

Covariates
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information on the composition and nutritional content of
individual foods.

We acknowledge that NHANES data are likely subopti-
mal compared to other nutrition datasets for investigating
the effect of red meat and other nutritional exposures on
health outcomes, due to it including few deaths and only
collecting data on diet at a single point in time [30,32].
Our objective, however, is not to provide answers about
the health effects of red meat but to demonstrate a proof-
of-concept application of specification curve analysis to
nutritional epidemiology. We used NHANES data due to
its availability to our team and our team’s familiarity with
its structure.

We observed that nearly all primary studies excluded
participants with missing data and performed complete case
analysis. We applied the same approach and excluded par-
ticipants with missing demographic, dietary, or lifestyle in-
formation. Furthermore, we excluded pregnant people since
they were not included in any of the primary studies. We
also excluded participants with implausible body mass in-
dex (BMI) (<15 or >60 kg/mz) or energy intake (<
500 kcal/day or >4500 kcal/day) since these likely repre-
sent instances of inaccurate reporting or collection of data.
To minimize missing data, we consolidated related vari-
ables in the database (eg, when data were missing for the
smoking history variable, we classified participants who
endorsed smoking 0 cigarettes in their life as nonsmokers).

Participants in NHANES completed two 24-hour dietary
recalls, each conducted by trained interviewers and sepa-
rated by 3—10 days, for which they provided information
on intake of foods and beverages on each recall day [32].
For our analysis, we define unprocessed red meat as any
mammalian meat (ie, beef, veal, pork, lamb, and game
meat) [33].

2.3. Data analysis

We performed specification curve analysis to investigate
the effects of unprocessed red meat on all-cause mortality,
using a Cox proportional hazards regression model with
time since 24-hour recalls as the time variable in the model.

For each aspect of the analysis, we used the most used
analytic choices from previous studies (Box 2) and enumer-
ated all combinations of these choices (within the context
of the analytic choices that we had selected for consider-
ation in the specification curve analysis) to produce a
comprehensive list of all plausible and reasonable analytic
methods. We reviewed analytic specifications to confirm
that every combination of analytic choices implemented
in the specification was indeed justifiable. Although we in-
tended to exclude specifications comprised of combinations
that were not defensible, we found no such cases.

Aspects of the analysis that varied across primary studies
included the type of nutrition model (ie, standard model and
multivariable nutrient density model), operationalization of
red meat (ie, continuous, quartiles, quintiles), subgroups of

interest (ie, only males, only females, all sexes, 20—39 years
old, 40—59 years old, 60—79 years old, all ages), and choice
of covariates. The standard nutrition model adjusts for total en-
ergy in the analytic model, while the multivariable nutrient
density model divides food intake by total energy intake and
also includes total energy intake in the model [34]. We did
not consider the residual energy model since itis largely equiv-
alent to the standard model [34].

We constructed two sets of covariates: covariates that we
included in all models and covariates that were adjusted in
some models. In all models, we adjusted for a core set of
covariates that were considered in nearly all primary
studies: age, sex, smoking, total energy intake, year, meno-
pausal status, hormone therapy, parity, and oral contracep-
tives. We also optionally adjusted for a secondary set of
other covariates that were only adjusted in some (but not
all) studies: race/ethnicity (Mexican American/other
Hispanic/non-Hispanic White/non-Hispanic Black/other
race—including multiracial), education (less than O9th
grade/9—11th grade/high school graduate/some college or
AA degree/college graduate or above), marital status,
alcohol consumption, physical activity, BMI, socioeco-
nomic status, comorbidities, and dietary variables.

We are unable to test for all possible combinations of co-
variates due to computational feasibility. Hence, we gener-
ated 20 random unique combinations of covariates that all
adjusted for the core set of variables and each of which
adjusted for a random set of the secondary covariates. We
applied specification curve analysis and computed hazard
ratios (HRs) and 95% confidence intervals corresponding
to the effect of red meat intake on all-cause mortality for
each analytic specification.

For specifications in which red meat was treated as a
continuous variable, we calculated HRs and associated con-
fidence intervals corresponding to a 100 g/day increase in
intake of red meat. For specifications in which red meat
was treated as a categorical variable (eg, quartiles or quin-
tiles), we calculated HRs and associated confidence inter-
vals corresponding to the highest vs lowest quantile of
red meat exposure. While these contrasts represent different
quantities of red meat intake, primary observational nutri-
tional epidemiology studies overlook these differences
when interpreting results and systematic reviews and
meta-analyses often combine these estimates from studies
using disparate quantities [25]. In our supplement, we pre-
sent results stratified by how red meat is defined in analytic
models (ie, quartiles, quintiles, or continuous 100 g/day).

To test whether models from the specification curve
analysis met the proportional hazards assumption, we
selected a sample of all specifications at random and tested
the correlation between Schoenfeld residuals and ranked
failure time.

We excluded results from models that yielded what we
considered to be implausible effect estimates (ie, studies
that yielded implausibly wide confidence intervals with
lower bound HR < 0.2 or upper bound HR > 5). A review
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of analytic specifications that yielded results outside of this
range suggested sparse data bias, where there are too few
events in certain combinations of explanatory variables re-
sulting in overestimation or underestimation of effect esti-
mates [35]. While these thresholds are arbitrary, they
pragmatically excluded specifications that yielded what
we considered to be results beyond the range of effects
we would plausibly expect from diet and nutrition on health
outcomes.

We performed three statistical tests to address (1)
whether the median effect estimate across all specifications
is more extreme than would be expected if red meat had no
effect on all-cause mortality, (2) the proportion of specifica-
tions that produced statistically significant effects is more
extreme than would be expected if red meat had no effect
on all-cause mortality, and (3) whether Stouffer’s averaged
Z value across all specifications is more extreme than
would be expected if red meat had no effect on all-cause
mortality [26]. To perform these tests, we permuted red
meat intake and sampled with replacement across all partic-
ipants to yield 500 bootstrapped samples to which we
applied specification curve analysis. Based on the results
of the specification curve analysis to the permuted datasets,
we calculated P values using the percentage of bootstrap
sample with results as or more extreme than the observed
results. We used an alpha of 0.05 to indicate statistical
significance.

We performed all analyses in R (Vienna, Austria; version
4.1.2), using the specr package for specification curve anal-
ysis [36]. Data from NHANES are publicly accessible and
the code to produce the results in this paper is available on
a public repository: https:/github.com/Yumin-Wang/Red-
Meat-Consumption—All-Cause-Mortality.

3. Results
3.1. Study characteristics

A systematic review identified 15 publications reporting
on 24 cohort studies that examined the effect of red meat on
all-cause mortality [29] (Supplement Table 1).

To ensure that these primary studies addressed similar
causal questions and interpreted their findings similarly,
we documented the objectives of the primary studies and
the ways in which the authors interpreted their findings
(Supplement Table 2). The primary aim of all except two
of these studies was to investigate the effects of red meat
on all-cause mortality. One study investigated the effects
of substituting total and different types of dietary protein
for carbohydrates on mortality but also presented models
investigating the effects of isocaloric substitutions of carbo-
hydrates for red meat on mortality [37]. The second study
investigated the effects of components of a traditional Sami
diet, including red meat, on mortality [38].

Studies reported 70 unique methods to investigate the ef-
fect of red meat on all-cause mortality (Supplement
Tables 2 and 3). Studies varied in their choice of analytic
model (eg, Cox proportional hazards model, Poisson
regression), adjustment for energy (eg, standard model,
multivariable nutrient density model), covariates included
in the model, operationalizations of variables (eg, func-
tional form in the model), and subgroups. Typical studies
performed time-dependent Cox regression models in which
red meat was treated as a categorical variable in quartiles or
quintiles and adjusted for age, sex, smoking, alcohol intake,
physical activity, and BMIL.

Studies reported relative effect estimates of red meat on
all-cause mortality ranging between 0.63 and 2.31 (median:

Survey 2007-2008
(n=10149)

All surveys 2007-2014
(n=40617)

Not eligible

(n=15939)

I

Survey 2009-2010
(n=10537)

Participants with information on

Participants age<20 or age>79

(n=2826)

mortality
(n=24678)
Survey 2011-2012
(n=9756) f

(n=21852)

Survey 2013-2014
(n=10175)

Participants with age range [20,79]

Participants excluded
(n=11191)

Y

Participants included
(n=10661)

Missing lifestyle information (n=5610)

Missing personal and family history of disease (n=3106)
Missing demographic information (n=1583)

Missing dietary information (n=351)

Missing physical examination information (n=217)

Missing reproductive health information for women (n=53)
Women pregnant at baseline (n=82)

Implausible BMI (n=33)

Extreme value of total energy intake (n=156)

Fig. 1. Selection of study participants from the National Health and Nutrition Examination Survey (NHANES) for inclusion in the analysis.
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1.14; interquartile range [IQR]: 1.02—1.23). Supplement
Figure 1 presents the results of the analyses reported in
studies.

3.2. Participant characteristics

We used data from NHANES 2007 to 2014 and
excluded participants without mortality data and missing
or implausible data, leaving 10,661 eligible participants.
Fig. 1 presents the selection of participants in the analysis.

Table 1 and Supplement Table 5 present participant
characteristics. Our study included participants ranging
from young adults to the elderly, with approximately equal
representation of men and women. Most participants were
White, nonsmokers or light smokers, with a median intake
of unprocessed red meat less than half a serving per day.

3.3. Specification curve analysis

Using all analytic choices identified in the primary
studies, we enumerated all the ways in which the data
may be reasonably analyzed (within the context of the an-
alytic choices that we had selected for consideration in the

Table 1. Participant characteristics

Total participants, N 10,661
All-cause mortality, n (%) 1022 (10)
Follow-up (months) 99 (65, 143)
Age (years) 50 (27, 71)
Sex
Female, n (%) 5150 (48)
Male, n (%) 5511 (52)

Dietary intakes

Unprocessed red meat (g/d) 29.5 (0, 120.2)

Total energy intake (kcal/d) 1945 (1168, 3099)

Years of entering cohort

2007—-2008, n (%) 2311 (22)
2009—-2010, n (%) 2358 (22)
2011-2012, n (%) 2857 (27)
2013-2014, n (%) 3135 (29)
Race/Ethnicity
Mexican American, n (%) 1321 (12)
Other Hispanic, n (%) 988 (9)
Non-Hispanic White, n (%) 5193 (49)
Non-Hispanic Black, n (%) 2235 (21)
Other Race — Including Multiracial, n 924 (9)
(%)
Smoking
Nonsmoker or light smoker, n (%) 8373 (79)
Moderate smoker, n (%) 437 (4)
Heavy smoker, n (%) 1851 (17)

BMI (kg/m?) 28.4 (21.9, 38.5)

Abbreviation: BMI, body mass index.
Data presented as numbers and proportions or as medians (10th
percentile, 90th percentile).

specification curve analysis). The analytic methods varied
according to the method of adjustment for energy (standard
model, multivariable nutrient density model), the operation-
alization of red meat in the model (quintile, quartile, and
continuous), subgroup based on sex (both sexes, male, fe-
male), subgroup based on age (all ages, 60—79 years old,
40—59 years old, 20—39 years old), and covariates. Each
model was adjusted for a core set of mandatory variables
and a random subset of 47 optional variables. Based on
these variations in analytic choices, we calculated a total
of 10 quadrillion possible unique analyses.

Since we were unable to consider all possible unique an-
alyses, we restricted the number of combinations of covari-
ates we considered in the specification curve analysis. We
generated 20 random unique combinations of covariates
that all adjusted for the core set of variables and each of
which adjusted for a random set of the secondary covari-
ates. This yielded a total of 1440 unique analytic specifica-
tions. These 1440 analytic specifications represent a
random subset of all 10 quadrillion possible analyses. We
reviewed the 1440 specifications to confirm that every com-
bination of analytic choices implemented in the specifica-
tion curve analysis was indeed justifiable. Although we
intended to exclude specifications comprised of combina-
tions that were not defensible, we found no such cases.

We were able to accommodate most analytic choices re-
ported in primary studies using data from NHANES
(Supplement Tables 2 and 3). We were unable to implement
time-varying variables due to the cross-sectional nature of
the NHANES data.

We implemented 1440 reasonable specifications and
identified 1208 unique specifications with plausible results
and 232 with implausibly wide confidence intervals (lower
bound HR <0.2 or upper bound HR >5). These implausible
specifications occurred in analyses of subgroups of the total
study population that included many adjusting covariates,
suggesting sparse data bias [35].

Fig. 2 presents the results of the specification curve anal-
ysis. Our specification curve analysis produced a median
HR of 0.94 (IQR: 0.83—1.05) for the effect of red meat
on all-cause mortality. HRs ranged from 0.51 to 1.75. Of
all specifications, 435 (36.0%) yielded HRs equal to or
more than 1.0 and 773 (64.0%) less than 1.0.

Of all specifications, 48 (3.97%) were statistically sig-
nificant. Of 48 statistically significant results, 40 had
indicated red meat to reduce all-cause mortality and eight
indicated red meat to increase all-cause mortality.
Among statistically significant effects suggesting benefit,
we observed a median HR of 0.65 (IQR: 0.58—0.69) and,
among statistically significant effects suggesting harm,
we observed a median HR of 1.22 (IQR: 1.19—1.27).
We found 45% (542/1208) of all specifications to yield
point estimates ranging between HR of 0.90 and 1.10.

Visual inspection of the specification curve plot suggests
subgroup by sex to importantly influence results, with ana-
lyses restricted to women more likely to suggest red meat is
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beneficial. We observed a median HR of 1.05 (IQR:
0.89—1.12) for men and 0.85 (IQR: 0.77—0.93) for women.
We did not identify other analytic characteristics as
consequential.

Supplement Figure 2 presents the results of the specifi-
cation curve analysis stratified by how red meat is defined
in analytic models (ie, quartiles, quintiles, or continuous
100 g/day). Supplement Tables 6 to 10 and Supplement
Figures 3 to 7 show the results of tests for the proportional
hazards assumption and graphical displays of the correla-
tion between Schoenfeld residuals and ranked failure time.
We did not find evidence that the proportional hazards
assumption was violated in any analyses.

Finally, we present statistical inferences about the de-
gree to which findings across all specifications are incon-
sistent with the null hypothesis (ie, red meat has no effect
on all-cause mortality) (Table 2). We performed statistical
tests addressing whether (1) the median effect estimate
across all specifications, (2) the proportion of specifica-
tions that produced statistically significant effects, and
(3) Stouffer’s averaged Z value across all specifications
is more extreme than would be expected if red meat had
no effect on all-cause mortality. All three statistical tests
yielded P values >.05.

4. Discussion
4.1. Main findings

In this study, we applied specification curve
analysis—a method that involves defining and imple-
menting all plausible and valid analytic approaches for
addressing a research question—to estimate the effect

A

2
8

182021.22232526.30
23567 27.20323334.35.36.41 a7
2347.9.12.16,18.20.21.23.28.30,31,33,3636.37.38 39.40.42.45.46
23479.10.12.14.15.17,18.19.21.222320.30.31,32 33.39.46.47

19.212321.31.323334,
3031.32.3336.37,

g %0

of unprocessed red meat on all-cause mortality [26]. To
mitigate the subjectivity involved in selecting analytic
specifications, we sourced analytic approaches from the
literature [29]. We performed 1208 unique analyses and
found considerable variability in results, with HRs
ranging from 0.51 to 1.75. Our results suggest that find-
ings in nutritional epidemiology studies may be contin-
gent on analytic methods.

In contrast to previous studies addressing red meat, we
found few of our analytic specifications to yield statistically
significant effects. This may be because we used more
recent data from NHANES, which include fewer accumu-
lated deaths [39]. The most recent iterations of NHANES,
however, are likely more reflective of the effects of red
meat on all-cause mortality in the context of contempora-
neous diets and lifestyles. Nevertheless, our primary objec-
tive was not to draw inferences about the health effects of
red meat but to provide a proof-of-concept illustration of
the application of specification curve analysis to nutritional
epidemiology.

Concerns may arise over the impact of various analytic
techniques on the interpretation of results. For example,
different methods for energy adjustment may have different
implications for how the effect is interpreted [18,40]. In our
study, we show that despite differences in analytic methods,
authors stated similar objectives and similarly interpreted
their results. This suggests that authors are using disparate
analytic methods to investigate near identical causal
questions.

In addition to analytic flexibility, researchers criticize
observational nutritional epidemiology studies for biases
associated with self-reported dietary data [20,23]. Yet,
nutritional epidemiology studies continue to play a critical

odhyian oo

sageuenBusnipy.
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Fig. 2. Results of specification curve analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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Table 2. Inferential statistics

Test statistics used

Observed results

P value
(% of bootstrap sample with
results as or more extreme)

Median effect size

Share of significant results
Aggregate all P values

HR = 0.94

48 of 1208 specifications
Stouffer Z = —11.69

P=.472
P =.998
P=.732

Abbreviation: HR, hazard ratio.

role in shaping dietary recommendations and policies [15].
While specification curve analysis does not address biases
due to dietary measures, when combined with other tools
and methods for more reliably measuring diet, specification
curve analysis may have the potential to enhance confi-
dence in the discipline [41,42].

4.2. Relation to previous work

Current evidence shows that results from studies may
vary due to alternative analytic specifications and that there
is often limited consensus on the optimal approach for data
analysis [6,43]. Research to date has not, however, quanti-
fied the magnitude of variation in results for typical epide-
miologic questions. Furthermore, while specification curve
analysis has been previously applied in psychology and
economics, it has not yet been applied in epidemiology or
nutritional epidemiology [27,44,45].

4.3. Strengths and limitations

The current work offers an innovative solution to ana-
lytic flexibility in nutritional epidemiology. To our knowl-
edge, our work is the first application of specification
curve analysis to nutritional epidemiology.

Our study also has limitations. There may be disagree-
ments among investigators about what constitutes a justifi-
able analytic approach. To mitigate this issue, our choice of
analytic specifications was informed by primary studies and
so represents real, published analyses rather than possible,
unpublished analyses that may only be marginally defen-
sible. Ideally, investigators should prespecify criteria for
distinguishing between justifiable and unjustifiable analytic
approaches. We caution against investigators in making
these distinctions after implementing the analysis since
their decisions may be influenced by the observed results.

We emphasize that specification curve analysis does not
eliminate subjectivity. For example, investigators may
disagree about what constitutes a justifiable analytic
approach. Furthermore, if investigators choose to select an-
alytic specifications based on published literature, as we did
in this study, there is typically more than one published sys-
tematic review that can be used to identify primary studies
and the choice of systematic review may be subjective.

Similarly, since there is usually more than one dataset avail-
able to address the same research question, the choice of
dataset is also a subjective decision. As specification curve
analysis becomes more common in epidemiology, we
expect more of such subjective factors to emerge. Nonethe-
less, specification curve analysis does improve on current
practice in which investigators can test many alternative an-
alytic specifications and selectively report results for those
that yield interesting or favorable results. It can identify
findings that are most robust to alternative analytic specifi-
cations and encourage evidence users to interpret the results
of epidemiology studies considering the typical variation in
results expected due to analytic flexibility.

Specification curve analysis also does not eliminate the
need for content knowledge and expertise. We see content
expertise being essential to distinguishing between justifi-
able and nonjustifiable analytic specifications and interpret-
ing and contextualizing results. In this study, content
expertise in nutrition was critical to select methods to adjust
for energy, the choice of core variables that we included in
all analytic models, and the interpretation of our findings.

We did not register a protocol for the present study. This
study is intended to provide a proof-of-concept rather than
test any specific hypotheses. Since our work presents the
first or one of the first applications of specification curve
analysis to epidemiology, we expected to encounter many
unanticipated decisions and challenges that we could not
predict or describe in a protocol. Hence, our work was
largely exploratory. The repository containing the analytic
code also contains a history of the project from its inception
in 2021.

Different analytic methods may have implications for
the interpretation of results. For example, different methods
to adjust for energy intake in nutritional epidemiology
address different causal questions [18]. Authors of nutri-
tional epidemiology studies, however, seldom acknowledge
these issues. We show that despite differences in analytic
methods, authors stated similar objectives and similarly in-
terpreted their results.

We only applied specification curve analysis to one
question—the effect of red meat on all-cause mortality.
The extent to which results may be contingent on analytic
methods may be different for other questions. We acknowl-
edge that this is a controversial question in the nutrition
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literature and that the application of specification curve
analysis to less contentious questions in nutritional epide-
miology may improve its adoption. Our choice of topic
was influenced by our team’s familiarity with red meat
and the related literature [15,29].

Our study likely underestimates the variations in results
due to alternative analytic specifications since the analytic
specifications that we could implement were limited by
the availability of variables and data in NHANES. For
example, due to the cross-sectional nature of NHANES,
we were unable to use time-varying covariates and explore
how alternative ways to account for these variables may in-
fluence results. We did not account for potential subjec-
tivity in inclusion of participants in the analytic set (eg,
thresholds for extreme energy intake) to maintain similar
numbers of participants across analyses. Similarly, there
are subjective analytic decisions in translating dietary re-
calls to nutrient and food intake, although we could not ac-
count for these decisions. For example, nutritional
epidemiologists code dietary recalls according to food clas-
sification systems and subsequently use nutrition databases
to estimate individual nutrient components of each item in
dietary recalls—all of which involves subjective decisions.

The continuous 2007—2014 NHANES data are likely
suboptimal for investigating the effect of red meat and other
nutritional exposures on health outcomes, due to it
including few deaths and only collecting data on diet at a
single point in time [30,32]. Nevertheless, our primary
objective is not to provide conclusive answers about the
health effects of red meat but to demonstrate a proof-of-
concept application of specification curve analysis to nutri-
tional epidemiology.

We did not incorporate weights in our analytic models.
Sample weights in NHANES are designed to account for
oversampling of specific subgroups and unequal probabil-
ities of selection in the population. These weights are
essential when the objective is to make inferences about
population characteristics or to estimate prevalence rates
because they adjust for factors that influence these esti-
mates and ensure that the results are representative of
the target population. However, when focusing on causal
inference, the primary concern is to eliminate or control
for confounding factors that may distort the true relation-
ship between exposure and outcome and sample weights
are less important, especially when variables used to
derive sample weights are already included in analytic
models [46—48].

We excluded models that yielded results that we deemed
to be implausible based on pragmatic but arbitrary thresh-
olds (ie, HR <0.2 or HR >5). We suspect that the observed
implausible specifications were due to sparse data bias—
where there are too few events in critical combinations of
explanatory variables [35]. It is, however, possible that
there were other models that produced results within this

threshold that had too few events to reliably estimate the ef-
fect of red meat on all-cause mortality.

Finally, while we attempted to test the proportional haz-
ards assumption using the correlation between Schoenfeld
residuals and ranked failure time, these tests have limited
sensitivity [49]. We also only tested a proportion of our
models for the proportional hazards assumption and it is
possible that this assumption may be violated in models
that we did not test.

4.4. Implications

Specification curve analysis allows investigators to test
all plausible and justifiable models to explain conflicting
findings or contextualize emerging findings. While this
study may provide insights on the health effects of unpro-
cessed red meat, we believe the most important contribu-
tion of this study is to provide a proof-of-concept
demonstrating the feasibility of applying specification
curve analysis to nutritional epidemiology.

Nutritional epidemiology has long been criticized for pro-
ducing sensational and conflicting findings, which has eroded
confidence in the discipline [23]. Nevertheless, nutritional
epidemiology studies continue to play a crucial role in shaping
dietary recommendations and policies, making it imperative
to draw credible inferences from these studies [14,15,24].
The broader application of specification curve analysis to
nutritional epidemiology may enhance confidence in nutrition
as a field by encouraging investigators to acknowledge an
additional source of uncertainty in studies. When combined
with other tools and methods that also address other limita-
tions of observational nutritional epidemiology studies (eg,
biases that affect self-reported dietary data) [41], specification
curve analysis has the potential to address a critical issue in
epidemiology—analytic flexibility—and identify findings
that are most robust to subjective analytic choices.

Findings from our study and future application of spec-
ification curve analysis will also be useful to evidence users
who can interpret results of epidemiology studies in the
context of the typical variation expected due to analytic
flexibility. When effect estimates exceed the typical varia-
tion due to analytic methods, evidence users can be more
certain of the findings, since they are likely robust to alter-
native analytic decisions.

Our findings may also have implications for precision
nutrition that attempts to distinguish between subgroups
of individuals who may differently respond to nutritional
interventions or have different nutritional needs [50—52].
Investigators have raised concerns that efforts to identify
“responders” and realize precision nutrition may be highly
dependent on the characteristics of analytic models [53].
Specification curve analysis may be useful for evaluating
the reliability of precision nutrition claims across a range
of defensible models.
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We acknowledge that the application of specification
curve analysis is time-consuming and resource-intensive.
Sourcing justifiable analytic specifications from primary
studies adds to this effort. While the application of speci-
fication curve analysis may not be feasible for all nutri-
tional epidemiology questions, it can be applied to the
most critical, impactful, or contentious questions in the
discipline and can serve as an additional available tool
to evaluate the credibility of nutrition claims in the
literature.

This is one of the first applications of specification curve
analysis to epidemiologic health data. We anticipate further
refinement of the method with future applications,
including the development of more comprehensive guid-
ance for investigators and increased standardization of the
approach. For example, ideally, investigators should
prespecify how they will select analytic aspects to consider
in specification curve analyses and how they will distin-
guish between justifiable and unjustifiable analytic ap-
proaches. Furthermore, the interpretation of results from
specification curve analysis is currently complex. Specifica-
tion curve plots may be overwhelming for evidence users,
especially if they account for many different analytic as-
pects. We hope with the greater adoption of this method,
improved ways of communicating results from specifica-
tion curve analyses emerge.

5. Conclusion

In this study, we apply specification curve analysis—a
novel analytic method that involves defining and imple-
menting all plausible and valid analytic approaches for ad-
dressing a research question—to investigate the effect of
red meat on all-cause mortality. We show variability in re-
sults across plausible analytic specifications. This research
demonstrates how specification curve analysis can be effec-
tively applied to nutritional epidemiology, providing a prac-
tical and innovative solution to analytic flexibility. This
approach has the potential to improve the credibility of in-
ferences from such epidemiologic studies.

This figure presents the results of the specification curve
analysis, including 1208 unique analytic specifications. The
upper portion of the plot shows HRs representing the effect
of red meat on all-cause mortality. On the x-axis are the
unique analytic specifications. The y-axis represents the
magnitude of effect estimates. Each point on the graph rep-
resents the results of a unique analytic specification. Point
estimates are shown in dark gray and 95% confidence inter-
vals as light gray bars. Each point represents the results for
the effect of red meat on all-cause mortality for a unique
model. Points in blue are statistically significant and sug-
gest red meat to prevent all-cause mortality and points in
red are statistically significant and indicate red meat to in-
crease risk of all-cause mortality.

The lower part of the plot shows the characteristics of
each analysis, including type of analytic model, operation-
alizations of variables, choice of covariates, and subgroups
of interest. Each vertical line denotes the specific choice
applied for each aspect of the analysis. We assigned a
unique number to each covariate (Supplement 4 shows
the number corresponding to each variable). Combinations
of numbers in the graph represent combinations of covari-
ates included in the model.
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