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Abstract 

Physical activity and several pharmacological approaches individually combat age-associated conditions and extend 
healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise 
could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking 
leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading 
candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need 
to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.
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Introduction
The world is growing older. Globally, the number of peo-
ple aged 65 and older is growing and is estimated to be 
1.5 billion people by 2050 [1]. In the USA, the number 
of people reaching the age of 65 is rising and is pro-
jected to outnumber those below 18 by 2035 [2]. Aging 
is characterized by the progressive loss of physiological 
function driving increased risk for non-communicable 
diseases including immobility, frailty, and metabolic, 

cardiovascular, and  neurodegenerative diseases. In 
the coming 2 decades, the global aging population will 
yield an estimated $47 trillion socioeconomic burden 
in healthcare expenditures [3–5]. With advancing age, 
the likelihood of multimorbidity increases, and there-
fore interventions aimed at targeting any one disease are 
unlikely to overcome the sequelae of other comorbidities.

Functional parameters such as cardiorespiratory fit-
ness (CRF), daily steps, gait speed, and skeletal muscle 
mass, strength, and power predict the risk of morbid-
ity and mortality in humans [6–18]. CRF, muscle mass, 
strength, and power alike decline with age and acceler-
ate with each decade of adulthood with ramifications 
on overall metabolic health and disease risk [19–23]. 
Intrinsic to these functional parameters is skeletal muscle 
health, which includes size, contractile function, compo-
sition, and metabolism. The age-related decline in skel-
etal muscle health contributes to poor quality of life and 
is an underlying risk factor for age-associated conditions 
like insulin resistance, cardiovascular disease (CVD), 
dementia, frailty, and cancer [24, 25]. Therefore, finding 
interventions and molecular targets to slow or prevent 
the loss of physical function and skeletal muscle health is 
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an attractive approach to reduce healthcare expenditures, 
delay disease onset, and improve quality of life in aging 
individuals.

Exercise has wide-reaching systemic effects impacting 
nearly every tissue and intervenes on multiple biologi-
cal pathways that become impaired with age, including 
senescence, proteostasis, mitochondrial function/quality, 
nutrient signaling, DNA damage, and inflammation [26]. 
Through repeated exercise, these cellular and molecular 
changes facilitate increasing CRF, muscle mass, strength, 
and power while also decreasing established risk factors 
for cardiometabolic diseases and thereby lowering the 
risk of T2DM, dementia, Alzheimer’s, CVD, atheroscle-
rosis,  frailty and improving cancer survival/remission 
[27–29]. Despite extensive research and commercial 
investment, a pharmacological agent that captures the 
numerous pleotropic health benefits of exercise has yet to 
be identified; thus, efforts to increase adherence to regu-
lar exercise continues [30, 31].

This review aligns with the CDC’s consideration that 
exercise is a planned, structured, repetitive, and purpo-
sive physical activity. Most recent estimates identify ~ 50% 
of the US adult population meets aerobic physical activity 
guidelines (150 min of moderate to vigorous activity per 
week), and ~ 30% meet muscle strengthening guidelines 
(2x/week), while even less meet both [32]. In the USA, it 
is estimated only 8.7% of older adults (> 75 years of age) 
engage in muscle-strengthening activities [33]. Increased 
adherence to exercise over a lifetime has remarkable 
health benefits. At the musculoskeletal level, lifelong 
exercise delays age-related declines in functional metrics 
while extending a more youthful molecular phenotype 
later in life [34–36]. However, with increasing age, sed-
entary behavior and cardiometabolic risk factors (hyper-
glycemia, hyperlipidemia, etc.) may contribute to delayed 
or diminished whole body and skeletal muscle adaptive 
potential to exercise, which is often referred to as ana-
bolic resistance [37–44]. Many of the proposed cellular 
and biological hallmarks of aging are implicated in blunt-
ing the responsiveness of skeleteal muscle to a bout of 
exercise [45]. However, consistent exercise can still elicit 
robust adaptations in older adults. One year of endurance 
training can improve CRF by ~ 5  ml  kg−1  min−1 in pre-
viously untrained 65-year-old or older individuals [46]. 
Importantly, in healthy individuals, a 3.5-ml kg−1  min−1 
greater CRF was associated with a 11% reduction in all-
cause mortality [6]. In addition, even in adults 85  years 
of age and older, resistance exercise is capable of increas-
ing muscle mass, strength, and power [47, 48]. Overall, it 
is never too late to engage in exercise with the intent of 
improving systemic and/or musculoskeletal metabolism 
and function to decrease mortality risk.

Intervening on conserved underlying mechanisms of 
aging before the development of disease could postpone 
the onset, slow the progression, or perhaps ameliorate 
multi-morbidity and extend healthy longevity. Numer-
ous dietary, lifestyle, pharmacological, and genetic 
approaches have identified that lifespan is modifiable in 
model systems. To rigorously test proposed geroprotec-
tive treatments, the National Institute on Aging (NIA) 
Interventions Testing Program (ITP) was established. 
Based at three sites across the USA, the goal of the ITP 
is to evaluate whether proposed agents extend lifespan 
and reduce late-life diseases. The ITP uses the outbred 
UM-HET3 mouse, which is designed to better model the 
genetic diversity of humans and limit the risk of identify-
ing interventions that apply only to strain-specific causes 
of death. Among the ITP and other independent groups, 
the mTOR inhibitor rapamycin is the most ubiquitous 
intervention thus far to extend lifespan in diverse spe-
cies [49]. The glucose-lowering medications metformin, 
sodium-glucose transporter 2 inhibitors (SGLT2i), acar-
bose, senolytics, and estrogenic agonists (17 −α estra-
diol) have also been demonstrated by the ITP or others to 
extend lifespan [50–54]. Positive results from preclinical 
models have spurred large-scale public interest in gero-
therapeutics, prompting some self-motivated individuals 
to take one or more putative geroprotective drugs and 
supplements off-label with the idea of further extending 
healthy longevity. Several tele-health companies have 
begun supplying these proposed geroprotectors to thou-
sands of people across the globe. Importantly, it remains 
unclear whether the benefits of these pharmacologic 
approaches observed in pre-clinical models or in-patient 
populations extend to individuals free from overt disease 
who may also engage in other bona fide health-extending 
interventions such as exercise. Therefore, similar to the 
importance of determining drug-drug interactions, it is 
necessary to understand if the interaction between exer-
cise and leading geroprotective drugs can have positive 
or detrimental impacts on the fundamental mechanisms 
of aging and healthy longevity.

Potentially, the combination of exercise and proposed 
gerotherapeutics could be used to further extend health-
span beyond either treatment alone. Here, we will briefly 
introduce the primary treatment indications for the 
mTOR inhibitor rapamycin and glucose lowering medi-
cations [55], discuss their potential impact on skeletal 
muscle and metabolic health, and describe current efforts 
investigating potential interactions between these leading 
geroprotectors and exercise, focusing on the likely impact 
on health and longevity (Fig.  1). We will also highlight 
potential mechanisms for consideration, discuss critical 
gaps in knowledge, and identify needs for future research 
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to firmly establish whether geroprotective drugs could 
have a harmonious relationship with exercise.

Rapamycin
The mTOR complex is a key regulator of cellular pro-
cesses and metabolism including growth, autophagy, 
and nutrient signaling [56, 57]. Dysregulation of mTOR 
signaling disrupts cellular homeostasis and is associated 
with organismal aging [56]. The mTOR inhibitors rapa-
mycin and the rapamycin analog everolimus are FDA-
approved drugs with primary treatment indications for 
kidney transplant and some cancer patients. In pre-clin-
ical studies in mice, rapamycin extends lifespan in both 
sexes and can extend lifespan even when started late and 
when dosed either transiently or intermittently [58–60]. 
Although life-phase specific and sex-adjusted dosing is an 
active area of investigation, current research shows that 
lifespan extension appears to be greatest when started 
earlier in life and in female mice [61]. In addition to lifes-
pan extension, mTOR inhibitors have ameliorated many 
age-related conditions associated with the heart, liver, 
brain, skeletal muscle, and the immune system [62–67].

Despite the positive benefits on lifespan, prolonged 
treatment of rapamycin at doses aligned with the FDA 
label for immunosuppression is associated with increased 
risk of numerous adverse metabolic side effects, includ-
ing hyperglycemia, new onset diabetes, and dyslipidemia 
[68, 69]. Even in a small-scale study of healthy older 
adults, 8 weeks of daily rapamycin (1 mg/day), which is 
lower than the dose used in transplant studies, tended 
to increase HbA1c, triglycerides, and VLDL [70]. These 
effects can also be seen in animal models, with IP (2 mg/
kg/day) or dietary rapamycin (14  ppm) inducing hyper-
glycemia and insulin resistance in mice, rats, and guinea 

pigs [71–74]. Dietary rapamycin (14  ppm)-induced 
hyperglycemia was also associated with worsened osteo-
arthritis severity in guinea pigs [74]. In addition to meta-
bolic side effects, rapamycin increased cataract severity 
in a dose-dependent fashion in both male and female 
UMHET3 mice [75]. Rapamycin also caused testicu-
lar atrophy in UMHET3 mice at the lowest dietary dose 
(4.7  ppm) and in C57BL/6  J mice when provided inter-
mittently (once every 5  days administration (2  mg/kg)) 
[60, 61, 75]. So, despite the positive influence on lifespan, 
the incidence of rapamycin-associated side effects may 
oppose some aspects of healthy longevity. Therefore, it is 
clearly important to establish the optimal dose and dos-
ing frequency of rapamycin and rapalogs that could be 
used to extend human healthspan with or without exer-
cise while minimizing risk of adverse side effects.

Rapamycin acutely and potently inhibits mTORC1 and 
when given frequently for prolonged periods of time has 
off target inhibition on mTORC2 signaling [76, 77]. In 
contrast to the lifespan benefits of mTORC1 inhibition, 
whole body or tissue-specific inhibition of mTORC2 is 
largely detrimental as evident by metabolic dysfunction, 
frailty, and shortened lifespan in mice [76, 78–84]. Con-
versely, increased mTORC2 activity increases the lifespan 
of flies, and mTORC2 activity is elevated in long-lived 
Snell dwarf mice, Ghr−/− mice, as well male mice treated 
with dietary acarbose- and 17-α estradiol [81, 85, 86]. 
Collectively, these data support a model by which rapam-
ycin and rapalog mediated inhibition of mTORC1 is ger-
oprotective, while the “off-target” inhibition of mTORC2 
is responsible for several negative metabolic effects of 
rapamycin.

Due to the different kinetics of mTORC1 and mTORC2 
inhibition by rapamycin, there may be a therapeutic 

Fig. 1  Capitalizing on the combination of regular exercise and geroprotectors. Current dogma suggests combining geroprotectors with concurrent 
exercise blunts hallmarks of exercise that are associated with healthy longevity. Frequent (daily) dosing of leading geroprotectors blunts clinically 
relevant improvements to cardiorespiratory fitness, muscle size/strength/power, and insulin sensitivity. Along the aging continuum, identifying 
an appropriate age to begin intervening with combined approaches represents an opportunity to suppress the age-related decline in systemic 
health. Finally, manipulating dose or frequency of dosing may provide the opportunity to capitalize on the benefits of both regular exercise 
and geroprotectors to enhance healthy longevity to new heights. Created with BioRender.com



Page 4 of 15Elliehausen et al. BMC Biology          (2023) 21:287 

window to maximize the health benefits associated 
with mTORC1 inhibition and minimize the undesirable 
adverse events mediated by mTORC2 inhibition by using 
intermittent dosing or alternative rapalogs. Intermittent 
rapamycin (once every 5  days) and rapalogs everolimus 
and DL001 enable more specific inhibition of mTORC1 
with less influence on mTORC2 and decreased metabolic 
and immunological disruptions [60, 87]. Importantly, 
intermittent rapamycin treatment was able to extend 
lifespan in female C57BL6 mice without many of the 
metabolic side effects [59].

In aged skeletal muscle, mTORC1 signaling has been 
shown to be elevated in both preclinical models and 
humans [65, 88–93]. Constitutive activation of mTORC1 
through genetic knockout of the upstream inhibi-
tor TSC1 is associated with muscle atrophy and insulin 
resistance [94–97]. Inhibition of mTORC1 signaling by 
rapamycin and the rapamycin analog everolimus par-
tially or completely preserves muscle size with increasing 
age and also restores or delays age-related impairments 
in markers of autophagy, neuromuscular junction dys-
function, muscle contractile function, grip strength, and 
running performance [65, 93, 98–100]. In young male 
mice, 2 weeks of rapamycin (2 mg/kg/day) did not impair 
exhaustive running performance suggesting rapamycin 
does not create a barrier to engage in or maintain physi-
cal activity [101]. Furthermore, knockout of the mTORC1 
substrate S6K1 protects against diet-induced obesity, 
improves insulin sensitivity, and extends lifespan [102, 
103]. In young men, a single dose of rapamycin (6  mg) 
inhibits mTORC1 signaling and improves skeletal mus-
cle insulin sensitivity during hyperaminoacidemia [104]. 
Collectively, these studies suggest that mTORC1 inhibi-
tion by rapamycin could be viable strategy to delay the 
onset or slow the progression of the age-related loss of 
skeletal muscle health in sedentary subjects.

Exercise + rapamycin
Both aerobic and resistance exercise can acutely increase 
downstream targets of mTORC1 and mTORC2 signaling, 
although the timing and magnitude of these effects may 
differ as a function of exercise mode and intensity level 
[105–109]. At the tissue level, changes in p70SK phos-
phorylation are largely mediated by mTORC1. The acute 
resistance exercise-induced increase in p70SK phospho-
rylation correlates with the extent of hypertrophy that 
occurs after chronic resistance exercise training, suggest-
ing mTORC1 signaling may be related to muscle growth 
[110]. Studies in rodents have demonstrated that inhibi-
tion of mTORC1 by rapamycin blunts the hypertrophic 
response to models of chronic overload with doses as low 
as 0.6 mg/kg bodyweight per day in mice [111–113]. Fur-
thermore, mTORC1 inhibition by rapamycin diminished 

the acute increase in mixed-muscle protein synthesis 
rates in both rodents and humans [114–116]. In an elec-
trical stimulation model of resistance exercise in young, 
male Sprague–Dawley rats, rapamycin dampened the 
increase in mixed muscle protein synthesis rates after 
acute exercise and was associated with reduced muscle 
hypertrophy [116]. In addition to mTORC1, recent work 
has begun to elucidate the role of mTORC2 in response 
to muscle contractions and the regulation of muscle pro-
tein synthesis. Muscle protein synthesis can remain ele-
vated 48 h following exercise, and the sustained elevation 
of muscle protein synthesis is suggested to be partially 
mediated by a rapamycin-insensitive and mTORC1-inde-
pendent mechanism [117–119]. In mice, a combination 
of rapamycin and mTORC2 knockout diminished muscle 
protein synthesis 3 h following muscle contractions more 
than either condition alone [120]. Given the relationship 
between muscle protein synthesis and hypertrophy, it is 
plausible to suspect that mTORC2 contributes to hyper-
trophy, though this has never been formally tested. Col-
lectively, these data suggest that along with mTORC1, 
mTORC2 may be necessary for the regulation of mus-
cle growth following exercise. These data are important 
because they highlight how daily or continuous rapamy-
cin administration could oppose the hypertrophic effects 
of exercise by inhibiting both mTORC1 and mTORC2 
mediated anabolic signaling. There is an active clinical 
trial in middle aged to older male adults using a unilat-
eral resistance exercise training paradigm to test if daily 
rapamycin (1 mg/day) impacts muscle size, strength, and 
proteostatic mechanisms in the resistance trained leg 
and/or the contralateral sedentary control leg (Clinical-
trials.gov, NCT05414292). The outcomes of this trial will 
be informative in guiding future exercise and rapamycin 
interventions.

mTORC1 and mTORC2 respond to both mechanical 
and nutritional cues including insulin to regulate glu-
cose uptake [121]. The nutrient overload model of insulin 
resistance suggesting elevated mTORC1 signaling leads 
to insulin resistance via feedback inhibition of insulin/
PI3K/AKT signaling from S6K [102]. Interestingly, in 
an electrical stimulation model of resistance exercise, 
the inhibition of mTORC1 with rapamycin (1.5  mg/kg) 
in male Sprague–Dawley rats prior to muscle contrac-
tion increases insulin stimulated skeletal muscle glucose 
uptake 6 h after exercise [122]. Therefore, acute inhibition 
of mTORC1 with resistance exercise may be a strategy to 
increase muscle glucose uptake more than exercise alone; 
however, this strategy would presumptively mitigate the 
increase in anabolic signaling and muscle protein synthe-
sis. Long-term studies and  different models of exercise 
are needed to determine if there are tradeoffs of increas-
ing glucose uptake at the expense of restricting muscle 
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protein synthesis. Additionally, exercise also increases 
known mTORC2 signaling outputs in mice and humans 
[108, 109] and genetic disruption of mTORC2 impaired 
aerobic exercise mediated glucose uptake and clearance 
by approximately 40% [108]. While never formally evalu-
ated, it is possible that frequent and prolong rapamycin 
dosing that also inhibits mTORC2 could further interfere 
with several of the metabolic health benefits of exercise 
and limit healthy longevity.

In addition to protein and glucose metabolism, 
mTORC1 signaling is also involved in skeletal muscle 
mitochondrial bioenergetics, content, and mitophagy. In 
cell culture, genetic and pharmacological inhibition of 
mTORC1 decreases mitochondrial respiration [78, 123]; 
however, the impact of rapamycin treatment on skeletal 
muscle mitochondrial respiration in rodent muscle tis-
sue is less consistent [101, 124–126]. This may be due 
to differences in mTORC1 activity in muscle at time of 
collection; traditionally, tissue is collected and measured 
following fasting which reduces mTORC1 signaling while 
feeding and insulin stimulate mTORC1 thereby increas-
ing mitochondrial respiration [127]. In support, ex  vivo 
pretreatment of muscle with leucine, an mTORC1 stimu-
lator, increases mitochondrial respiration which is then 
attenuated by adding rapamycin [128].

The regulation of mitochondrial protein content by 
mTORC1 also has time and context dependent out-
comes. mTORC1 was shown to facilitate the interac-
tion between the transcription factor YY1 and PGC1 α 
which regulates numerous nuclear genes encoding mito-
chondrial proteins [124, 129]. In mice, 11  days of daily 
rapamycin (2.5  mg/kg) administration interrupted YY1- 
PGC1 α interaction thus reducing transcript expression 
of mitochondrial encoding genes in skeletal muscle [124]. 
In myotubes, the regulation of mitochondrial encoding 
genes appears time dependent, where 14  h of rapamy-
cin acutely decreased, but 4 days of rapamycin increased 
expression [123, 124]. Relevant to exercise, rapamycin 
treatment did not suppress mRNA expression of mito-
chondrial genes in contracted myotubes [123]. In young 
female mice, a single dose of rapamycin (1.5  mg/kg) 
1  h prior to moderate intensity treadmill running (1  h 
at 18  m/min) did not suppress markers of mitochon-
drial biogenesis nor crude mitochondrial protein syn-
thesis rates; however, rapamycin did attenuate the early 
increase in myofibrillar protein synthesis rates [130]. 
These data are consistent with previous work suggesting 
that mitochondrial proteins may evade translational inhi-
bition by rapamycin [131, 132]. Proteomic approaches 
have recently been developed to measure the protein syn-
thesis rates of individual skeletal muscle proteins rather 
than crude subcellular fractions that contains hundreds 
of proteins. Kinetic proteomic techniques revealed that 

the impact of rapamycin on mitochondrial protein turno-
ver rates are specific to individual proteins [131, 133], 
with the synthesis rates of many electron transport pro-
teins decreased by rapamycin. These data indicate that 
rapamycin may not hinder the acute mitochondrial and 
metabolic responses to endurance exercise, but the long-
term impact of rapamycin on oxidative and metabolic 
adaptations remain unknown and may differ from the 
acute response.

In addition to protein synthesis, inhibition of mTORC1 
regulates proteostatic maintenance through autophagy, 
mitochondrial autophagy (mitophagy), and the ubiqui-
tin proteasome system [94, 96, 98, 134]. With increasing 
age and metabolic disease, proteostatic maintenance is 
impaired. However, it remains unknown how the combi-
nation of exercise and rapamycin will impact proteostatic 
mechanisms. Interventions such as rapamycin, exercise, 
and caloric restriction improve proteostatic maintenance, 
maintain healthy mitochondrial pool, and improve skel-
etal muscle and organismal health [98, 134, 135]. In path-
ological models of mitochondrial disorders, rapamycin 
restores mitochondrial myopathies and delays mortality 
in part through regulation of autophagy/mitophagy [126, 
136–139]. Interestingly, a connection between mito-
chondrial dynamics, mTORC1/2 signaling, and fiber type 
differentiation has been identified [140]. Therefore, the 
combination of exercise and rapamycin may be a viable 
strategy to augment dampened skeletal muscle plasticity 
in aged models [141, 142].

Due to the profound impact of rapamycin on lifespan 
extension in model systems, there is significant interest 
among the general public and the scientific community in 
translating these insights to human application. A recent 
survey study of 333 self-reported healthy and physically 
active adults prophylactically taking rapamycin with 
the goal of healthy longevity/anti-aging indicated that a 
fraction of rapamycin users (25–38%) reported overall 
improvements to quality of life related to physical health, 
emotional wellbeing, brain function, and aches and pains 
[143]. Overall, the majority of participants reported that 
the most common dose was 6  mg once weekly. Other 
reported dosing regimens were higher doses taken 
biweekly or lower doses taken daily. These results should 
be taken cautiously given the nature of self-reported 
bias that the authors acknowledge; however, these sur-
vey results provide additional impetus to further explore 
the interaction of rapamycin and rapalogs with exercise. 
Specifically, more work is needed to identify how the dif-
ferent mTORC1 and mTORC2 signaling kinetics induced 
by rapamycin and rapalogs might be leveraged to define a 
therapeutic window that capitalizes on the benefits rapa-
mycin while minimizing antagonistic effects on exercise. 
Additionally, identifying populations where the greatest 
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benefit of adding rapamycin to exercise is also of great 
importance. Older, insulin-resistant, and/or individu-
als with Alzheimer’s and related dementias often pre-
sent with elevated mTORC1 signaling [65, 88–93, 144, 
145], and therefore restoration to normal healthy levels 
could potentially improve responsiveness to exercise 
stimuli. However, it is incompletely understood if the 
benefits of rapamycin treatment on health and longevity 
are limited to models of increased mTORC1 signaling. 
More work will be needed to identify if baseline mTOR 
activity may contribute to the extent of healthy longev-
ity by rapamycin. Interestingly, chronic exercise train-
ing reduces basal mTOR signaling and even lowers the 
magnitude of mTOR signaling following contractions on 
repeated training days despite increases to protein syn-
thesis and muscle mass [146, 147]. In summary, it seems 
that chronic and continuous rapamycin taken in combi-
nation with exercise may not be conducive to promoting 
healthy longevity with regard to muscle mass and glucose 
tolerance and could potentially exert negative effects on 
other benefits of regular exercise. While speculative, it 
is possible that alternative dosing schedules of rapamy-
cin with exercise presents an opportunity to capture the 
benefits of both interventions while minimizing negative 
interactions.

Glucose lowering medications
Metformin
Metformin is the frontline medication prescribed to 
patients with type 2 diabetes. Approximately 90 mil-
lion prescriptions are filled each year in the USA alone 
[148]. Metformin has a relatively safe profile with mini-
mal side effects; however, patients report vitamin B12 
deficiency and gastrointestinal discomfort that typically 
resolves with lowering the dose [149]. Metformin sup-
presses hepatic glucose output; however, the benefits of 
metformin on the biology of aging may extend beyond 
glucose regulation [150, 151]. In humans and preclini-
cal models, metformin impacts numerous cellular and 
molecular pathways that become dysregulated in aging 
such as AMPK, mTOR, inflammation, autophagy, and 
cellular senescence; however, these effects may be tis-
sue and context-dependent [152, 153]. Beyond the 
effects on cellular processes, metformin can increase 
the lifespan and delay aging in model organisms, specifi-
cally nematodes and rodents with strain, sex, and dose-
dependent effects [154–156]. For instance, when started 
at 12 months of age in male C57BL/6 and B6C3F1 mice, 
low dose metformin (1000  ppm in the drinking water) 
increased lifespan while a higher dose (10,000 ppm in the 
drinking water) decreased lifespan [54]. In the ITP die-
tary metformin (1000 ppm) did not alter lifespan in UM-
HET3 mice [51]. The addition of metformin (1000 ppm) 

with rapamycin (14  ppm) in the diet further extended 
lifespan compared to historical cohorts of rapamycin 
alone suggesting a potential for additive benefits with 
cotreatments [51].

The US Diabetes Prevention Program (USDPP) dem-
onstrated that both lifestyle modification, including 
150 min of moderate intensity physical activity per week, 
and metformin, independently prevented the progres-
sion from prediabetes to T2DM by 58% and 31%, respec-
tively [157]. Although the USDPP was not statistically 
powered for exploratory analyses, data from the cohort 
of older adults (> 60 years) indicates lifestyle modification 
decreased risk of developing T2DM by 69% while met-
formin did not [157, 158]. An original, retrospective anal-
ysis indicated that metformin monotherapy in patients 
with type II diabetes mellitus (T2DM) was associated 
with increased survival compared to age matched, non-
diabetic controls [159]. However, a recent re-evaluation 
of this survival advantage in a different cohort of indi-
viduals found that metformin does not improve survival 
in patients with T2DM compared to either age-matched 
healthy controls or T2DM patients not taking metformin 
[160]. Therefore, caution should be used when consid-
ering the use of metformin as a geroprotective strategy 
because many of the proposed benefits on human aging 
come from preclinical models, patient populations, or 
those with hyperglycemia, and there is a paucity of data 
from people with normoglycemia and/or do not have an 
overt chronic disease [161]. While there was excitement 
for a proposal to perform the first large-scale, multisite, 
clinical trial to target aging with metformin (TAME), the 
equivocal nature of metformin on lifespan and indices of 
healthspan may have contributed to the stalled or delayed 
nature of this proposal [162]. The ongoing ANTHEM 
clinical trial (NCT04264897) in individuals free of dis-
ease is seeking to determine who may or may not ben-
efit from metformin based on their antecedent metabolic 
health and future risk of age-related chronic conditions 
[163]. Results from ANTHEM and other small-scale 
studies could be used to inform, refine, and potentially 
strengthen the TAME proposal.

Metformin + exercise
The proposition of combining metformin and exercise 
to further extend healthy longevity is attractive because 
both prescriptions improve metabolic health through 
multiple overlapping yet distinct pathways in various 
tissues [153, 164–166]. The American Diabetes Asso-
ciation recommends metformin and regular exercise for 
management of glucose in individuals with T2DM or 
prediabetes. However, current evidence indicates that 
metformin diminishes several health benefits of exercise 
conducive to healthy longevity in individuals without 
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overt T2DM. In young, middle-aged, and/or older adults 
without T2DM, metformin inhibits the improvement in 
cardiovascular risk factors, insulin sensitivity, CRF, and 
skeletal muscle size, strength, and power [167–175]. Fur-
thermore, metformin increases heart rate and ratings 
of perceived exertion during exercise which may add an 
additional barrier for adults to adhere to exercise guide-
lines [171, 176]. However, there is significant heteroge-
neity in the response to metformin during exercise. Our 
retrospective analyses identified subjects with the great-
est insulin sensitivity and highest mitochondrial com-
plex-1 respiration at baseline had no improvement or a 
decrease in insulin sensitivity when taking metformin 
with exercise [163]. Conversely, those individuals who 
were relatively less metabolically healthy did not experi-
ence the inhibitory or detrimental effects of metformin 
[163]. These findings are consistent with observations 
by Knowler et al., indicating those with greater baseline 
BMI or HbA1c had a greater decrease in the relative risk 
reduction for T2DM following metformin treatment 
[157]. It is important to note that most studies to date 
have investigated metformin administered daily at clini-
cally relevant doses (1500–2000  mg/day). Therefore, it 
remains unknown if a different dose or dosing schedule 
could work with exercise to promote healthy longevity.

The mechanisms by which metformin antagonizes 
the cardiometabolic benefits of exercise remain largely 
unknown. Understanding how metformin inhibits sev-
eral exercise adaptations may unlock clues on how to 
co-prescribe metformin and exercise to have additive or 
at least not detrimental effects. In response to aerobic 
exercise training, metformin completely abrogated the 
improvements in skeletal muscle mitochondrial com-
plex I linked respiration [170]. Therefore, it is reasonable 
to suspect that restricting the ability of mitochondria to 
meet the increased energetic demands of exercise would 
create significant cellular energetic stress and stimulation 
of AMPK. However, studies investigating the interaction 
of metformin and exercise have demonstrated equivo-
cal results ranging from metformin inhibiting, having 
no effect, or increasing skeletal muscle AMPK signaling 
after acute or chronic exercise [168, 170, 176]. The exer-
cise mode, duration, intensity, and biopsy timing may 
all play a role in the discordant results. In muscle biopsy 
samples from the MASTERS trial, metformin increased 
the phosphorylation of acetyl-CoA carboxylase a down-
stream target of AMPK after 14 weeks of resistance exer-
cise training, and this was accompanied by a trend to 
attenuate the increase in mTORC1 signaling [175]. Simi-
larly, in human primary myotubes, metformin (10  mM) 
increased AMPK signaling and inhibited the increase in 
mTORC1 signaling after electrical stimulation. A follow-
up analysis of the MASTERS trial using transcriptomics 

revealed metformin blunted the number of differentially 
expressed genes in skeletal muscle by ~ 30% (PLA—2048 
vs MET—1435) [177]. Subsequent analyses identified 
that metformin may positively intervene on several aging 
associated pathways; however, these were not related to  
increased skeletal muscle size or maximal power produc-
tion that are linked to clinically important outcomes. We 
also have unpublished data in adult male mice suggesting 
metformin attenuates the improvement in glucose toler-
ance, skeletal muscle mitochondrial respiration, and the 
number of differentially expressed genes following tread-
mill exercise training. In addition, while metformin alone 
was not tested, the addition of metformin to rapamycin 
treatment further suppressed cumulative mitochondrial 
and whole muscle protein synthesis more than rapamycin 
alone suggesting a role for metformin to alter proteome 
remodeling and turnover [133]. The energetic stress that 
accompanies metformin treatment may restrict changes 
to gene expression and proteome turnover to attenuate 
exercise induced cellular remodeling and adaptation.

In summary, it is unknown whether metformin can 
be combined with exercise to maintain or slow the age-
related loss of health. Moreover, the heterogeneous 
responses to metformin provide challenges and opportu-
nities to unravel the mechanisms underlying the antago-
nistic or positive effects of metformin on several health 
benefits of exercise. For example, vitamin B12 is a criti-
cal co-enzyme in both the mitochondria and cytosol to 
maintain substrate metabolism, and it remains unknown 
if those who experience vitamin B12 deficiency are more 
susceptible to the inhibitory role of metformin on whole 
body or skeletal muscle adaptations to exercise. Tradi-
tionally, metformin is taken once or twice daily and has 
a plasma half-life of ~ 6  h but can remain in cells and 
tissues for up to 24  h. Hypothetically, this presents an 
opportunity to test whether alternating days of exercise 
and metformin could be implemented to avoid unwanted 
side effects and capture the health benefits of both 
prescriptions.

SGLT2 inhibitors
SGLT2 inhibitors (SGLT2i) such as empagliflozin, cana-
gliflozin, and dapagliflozin have been identified as a 
pharmacological alternative to metformin. SGLT2i 
lower glucose by attenuating glucose uptake in the kid-
neys causing glucosuria [178]. Like metformin, there is 
a plethora of data in prediabetic and diabetic popula-
tions to indicate that SGLT2i monotherapy helps regu-
late glucose and manage HbA1c which are accompanied 
by decreased CVD events, improved vascular function, 
weight loss, substrate utilization, and improved car-
diac function [179–183]. In patients with heart failure 
and preserved ejection fraction, empagliflozin reduced 
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cardiovascular death or hospitalization for heart failure 
independent of diabetes [184]. In the ITP, dietary canagli-
flozin (180 ppm) started at 7 months of age extended the 
lifespan of UM-HET3 male mice by 14% with no effect 
on females despite lower fasting glucose and improved 
glucose tolerance in both sexes [52]. Concerningly, cana-
gliflozin use in patients with T2DM, UM-HET3 mice, 
and rats report adverse effects on bone health as evident 
by decreased bone mineral density and increased risk of 
fracture [185–189].

SGLT2i + exercise
Currently, there are few studies that have investigated the 
combination of SGLT2i and exercise. Young Sprague–
Dawley rats were fed a high fat diet for 12  weeks and 
treated with streptozotocin to induce obesity and mimic 
T2DM. Following the 12-week high-fat diet plus strepto-
zotocin lead in, the co-treatment of canagliflozin (3 mg/
kg/day) and 12-week treadmill running (60  min/day, 
5 days/week) significantly reduced body weight gain to a 
greater extent than exercise alone while equally improv-
ing glucose tolerance, submaximal exercise performance, 
and increased reliance on fat as a fuel source [190]. To 
investigate whether SGLTi can restore the adaptative 
response to exercise due to correction of hyperglycemia 
independent of overt body weight differences, strepto-
zotocin-induced hyperglycemic male CD-1 mice were 
treated with the combination of canagliflozin (~ 30  mg/
kg/day) and 8  weeks of voluntary wheel running [191]. 
The cotreatment of exercise and SGLT2i was able to 
restore fasting blood glucose, and glucose tolerance dur-
ing an oral glucose tolerance test, and improve VO2 max 
greater than exercise alone in hyperglycemic mice [191]. 
These metabolic and physical adaptions were associated 
with an increased oxidative fiber type distribution and 
capillary density. Importantly, this study employed nor-
moglycemic (no streptozotocin) exercise-trained mice, 
and the improvements to glucose tolerance, mitochon-
drial content, body composition, oxidative fiber type 
shift, and capillary density were equivalent to hyperglyce-
mic mice co-prescribed SGLT2i and exercise. These data 
support the notion that restoration to normoglycemia 
with SGLT2i is a viable strategy with exercise to further 
capitalize on the health benefits of aerobic exercise.

In patients with T2DM, the combination of exercise 
and SGLT2i is more effective at improving metabolic 
health than SGLT2i treatment alone [192]; however, 
there is limited data in individuals without T2DM. In 
overweight or obese men and women (18–50 years old) 
with normal fasting glucose, adding daily dapagliflozin 
(5–10 mg/day) to aerobic exercise training for 12 weeks 
surprisingly increased baseline fasting blood glucose and 

blunted the improvement in whole body insulin sensitiv-
ity after exercise training [193]. However, cotreatment of 
dapagliflozin and exercise did not impact the exercise-
induced improvements to body composition, VO2max, 
or indices of mitochondrial function. More work is 
needed exploring the interaction between various exer-
cise modalities and SGLT2i to determine if SGLTi can 
have favorable effects on exercise adaptations. Further-
more, there is a need to understand whether the osteo-
genic effects of exercise can protect against the decline 
in bone health with SGLT2i use [185–189]. The limited 
data to date in humans suggests SGLT2i may interfere 
with glucose control and insulin sensitivity but do not 
negatively impact several other health benefits of exer-
cise. However, there is an urgent need for more data, par-
ticularly in non-patient populations undergoing different 
exercise regimens.

Acarbose
Acarbose inhibits intestinal α-glucosidase to delay the 
digestion of polysaccharides thus attenuating uptake of 
glucose in the GI tract and lowering postprandial glu-
cose excursions. Overall, the impact of dietary acar-
bose on lifespan extension appears to be sex-, age-, and 
dose-dependent in UM-HET3 mice. When started at 
4  months of age, dietary acarbose extends lifespan of 
male and female mice by 22% and 5% respectively, but 
when started at 16  months, it only extends lifespan in 
male mice by 6% [51, 194]. Furthermore, in females, the 
highest acarbose dose (2500 ppm) has a greater lifespan 
extension than 1000  ppm [53]. The lifespan extension 
in males by acarbose has been largely attributed to not 
only reduced neoplastic disease but also a reduction in 
mTORC1 signaling and cap-independent translation, a 
shared trait among long-lived models [195]. Further-
more, acarbose (1000 ppm) increased mTORC2 signal-
ing in the liver and improved glucose tolerance in male 
mice [85]. Additionally, similar to metformin, acarbose 
when combined with rapamycin starting at 9 months of 
age extends lifespan even further than rapamycin alone 
with the largest reported increase in median lifespan 
by the ITP at 28% for females and 37% for males [196]. 
Acarbose may have additional benefits to the cardio-
vascular system; however, it is unclear if these results 
are secondary to the glucose-lowering properties [197]. 
Recent evidence suggests a portion of the population 
may be resistant to acarbose via a mechanism that 
involves microbiota-based degradation of acarbose 
[198]. Efforts to circumvent the degradation of acarbose 
may be necessary to broadly translate acarbose into a 
geroprotector for healthy longevity.
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Acarbose + exercise
The combination of acarbose and exercise is a limited 
area of research, particularly in populations without 
T2DM. In 8-week-old C57BL/Ks (db/db) mice, daily 
acarbose (40  mg/kg/day) combined with 4  weeks of 
swimming exercise did not abrogate any exercise-induced 
benefits to fasting glucose [199]. In patients with T2DM 
(50–58  years old) with 60% already taking antidiabetic 
drugs, the addition of daily acarbose (100 mg 3 times per 
day) and 12 weeks of moderate-intensity aerobic exercise 
yielded improvements to fasting glucose, HbA1c, insu-
lin sensitivity, HbA1C, and VO2max while exercise alone 
was only capable of improving insulin sensitivity [200]. 
These findings demonstrate the potential of combin-
ing acarbose and exercise to further improve metabolic 
health in subjects with T2DM. However, due to the lim-
ited number of studies so far, it remains unknown if add-
ing acarbose to exercise could further yield healthspan 
or lifespan-extending effects in non-patient populations. 
The exploration of combining exercise and acarbose will 
be a fruitful area of research. Since acarbose works dif-
ferently than metformin or SGLT2 inhibitors, it may be 
possible to exploit the benefits of both interventions in 
tandem.

Conclusions and limitations
Several pharmacological interventions have been effec-
tive at combating aging hallmarks, ameliorating aging 
diseases, and extending lifespan in preclinical models. 
Exercise is one of the most impactful lifestyle modifica-
tions that can decrease the risk of many cardiometabolic 

diseases and some cancers in humans. Exercise modu-
lates several fundamental mechanisms of aging and may 
have rejuvenating aspects in aging tissues [201, 202]. The 
existing evidence suggests that most leading geropro-
tective drugs do not cooperate with concurrent exercise 
training and may limit the healthspan extending effects 
of exercise (Fig.  2). Opportunities for future research 
are ripe given few have assessed alternative dosing 
schemes in the attempt to harness the benefits of exer-
cise and geroprotectors to modulate the biology of aging 
harmoniously.

This review is focused on select geroprotectors that 
were recently highlighted to have the highest potential 
benefit based on the limited available data [55]. However, 
there are other compounds, such as senolytics and 17 −α 
estradiol, that also have translational potential in pre-
serving metabolic health and physical function with age 
[50, 85, 203]. Considering that each putative geroprotec-
tor and exercise may have sex-specific effects on health 
and longevity [204–206], a limitation to date is that most 
studies investigating the interaction of exercise and gero-
protectors have used male models. Therefore, the inclu-
sion of females and rigorous study into the biological 
impact of sex is strongly needed when investigating the 
interaction of proposed geroprotectors and exercise.

We acknowledge this review largely focused on skel-
etal muscle due to its critical role in modulating sys-
temic health with increase age. However, the interaction 
of aging, exercise training, and proposed gerotherapeu-
tics also occur in the heart, liver, brain, adipose, cardio-
vascular, immune, nervous system, and brain. Studying 

Fig. 2  Current known and unknown interactions between leading geroprotectors and chronic exercise adaptations. Compared to regular exercise, 
frequent dosing of leading geroprotectors with concurrent exercise blunts many hallmark adaptions to exercise in populations without overt 
disease. Green up arrow, greater improvement with exercise training; red down arrow, blunted improvements with exercise; horizontal grey arrow, 
no different than exercise alone; question mark, indicates unknown interaction. Created with BioRender.com
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alternative tissues and the relationship to healthy longev-
ity in response to geroprotector drugs and exercise is also 
of great interest.

This review focuses largely on clinically relevant 
functional metrics such as muscle strength and car-
diorespiratory fitness because they are relatively easy 
and inexpensive to perform and are well validated and 
strongly predictive of morbidity and mortality [6–18]. 
While there is great interest and need to identify bio-
markers of aging [207], there is currently a lack of con-
sensus on validated biomarkers that outperform or 
strengthen existing functional or clinical outcomes. The 
use of biomarkers to inform on the clinical benefits or 
consequences of geroprotector drugs plus exercise is an 
exciting area for future research.

Consistent with the goal of healthy longevity, there are 
several outstanding questions (Table  1) that should be 
considered before the broad implementation and pro-
phylactic use of potential geroprotector drugs in indi-
viduals who are free of disease and/or physically active. 
We aim through this review to encourage future research 
to evaluate the interaction of proposed geroprotectors 
with regular exercise across the spectrum of age groups 
and antecedent metabolic health. If regular exercise and 
proposed geroprotectors can be determined to work 
harmoniously, then perhaps we may find more effective 
strategies to extend healthy longevity.
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