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Validation of biomarkers of aging

Mahdi Moqri    1,2,3,32, Chiara Herzog    4,32, Jesse R. Poganik    1,32, Kejun Ying    1,5, 
Jamie N. Justice6, Daniel W. Belsky    7, Albert T. Higgins-Chen    8, 
Brian H. Chen9, Alan A. Cohen    10, Georg Fuellen11,12, Sara Hägg    13, 
Riccardo E. Marioni    14, Martin Widschwendter    4,15,16, Kristen Fortney17, 
Peter O. Fedichev18, Alex Zhavoronkov19, Nir Barzilai20, Jessica Lasky-Su    21, 
Douglas P. Kiel    22, Brian K. Kennedy    23,24, Steven Cummings    25,26, 
P. Eline Slagboom    27, Eric Verdin    28, Andrea B. Maier24,29, Vittorio Sebastiano3, 
Michael P. Snyder    2, Vadim N. Gladyshev    1  , Steve Horvath    30   & 
Luigi Ferrucci    31 

The search for biomarkers that quantify biological aging (particularly 
‘omic’-based biomarkers) has intensified in recent years. Such biomarkers 
could predict aging-related outcomes and could serve as surrogate endpoints 
for the evaluation of interventions promoting healthy aging and longevity. 
However, no consensus exists on how biomarkers of aging should be validated 
before their translation to the clinic. Here, we review current efforts to evaluate 
the predictive validity of omic biomarkers of aging in population studies, 
discuss challenges in comparability and generalizability and provide rec
ommendations to facilitate future validation of biomarkers of aging. Finally, 
we discuss how systematic validation can accelerate clinical translation of 
biomarkers of aging and their use in gerotherapeutic clinical trials.

Aging is the strongest risk factor for most chronic diseases, physical and 
cognitive impairment and death. Despite this, our approach to under-
standing and treating aging-associated diseases has largely overlooked 
the biology underlying the aging process. The geroscience hypothesis 
posits that targeting aging itself has the potential to forestall multiple 
aging-associated disease processes simultaneously. As the aging popu-
lation continues to grow across the globe, the promise of therapeutic 
targeting of aging to extend healthy lifespan has come into ever-sharper 
focus. To achieve this goal, there is growing interest in biomarkers that 
can quantitatively assess biological age and may ultimately serve as 
surrogate endpoints for aging-associated outcomes in clinical studies.

Many existing biomarkers of aging were initially developed to 
predict chronological age, although it was found that the deviation 
between their predicted age and the true chronological age (‘AgeDev’) 
was associated with age-related outcomes and diseases. More recent 
biomarkers of aging focus instead on prediction of biological age (that 
is, the level of age-dependent biological changes, such as molecular 
and cellular damage accumulation and its consequences at a certain 
point in time) and/or health outcomes rather than chronological 
age. Of note, in practical use, biological age is often summarized as 
a number (in units of time), just like chronological age. Regardless of 

the development strategy, most current biomarkers of aging predict 
aging-related outcomes and identify factors associated with (the pace 
of) aging in retrospective epidemiological studies1–7. In addition, they 
have started to provide clues on the biological mechanisms of aging. 
Despite these advances, the validity and usefulness of biomarkers of 
aging is still not widely acknowledged by biomedical scientists1. In 
contrast to biomarkers of various specific diseases, there are currently 
no recommended guidelines for standardizing development, measure-
ment or validation of biomarkers of aging by regulatory bodies such as 
the Food and Drug Administration or the European Medicines Agency.

Validation is the multistep process by which the characteristics 
of biomarkers are defined, including the conditions under which they 
prove reliable and accurate and their ability to predict relevant out-
comes8–10. In the context of aging biomarkers, this process requires 
a wide range of expertise in areas such as the biological mechanisms 
of aging (including conserved pathways and mechanisms in model 
systems and in humans, the design and construction of composite 
biomarkers, the design, execution and analysis of epidemiological stud-
ies that collect and store biological specimens and assess age-related 
predictors and outcomes in representative populations (includ-
ing biobanks and cohorts), and the validation of biomarkers across 
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to study participation, which can preclude assessment of the predic-
tive value of the marker in relation to future age-relevant outcomes. 
Furthermore, cross-sectional studies do not allow assessment of 
within-individual changes in response to interventions (sensitivity 
to change), a key requirement for the use of biomarkers of aging in 
clinical trials.

In contrast to cross-sectional studies, longitudinal studies collect 
biological measures (omics or other biomarkers), phenotypes (clinical 
characteristics) and adverse age-related health outcomes serially over 
time in the same individuals (Fig. 1b). Most longitudinal studies also 
include data on genetic variants, and, through Mendelian randomiza-
tion studies, they may help determine whether specific biomarkers 
are causally related to health outcomes or rather reflect the activation 
of mechanisms aimed at counteracting the pathologic processes that 
lead to those adverse health outcomes (generally defined as ‘resil-
ience’ mechanisms)19. Most studies collect longitudinal information 
on participant demographics (for example, age, sex), physiological 
measurements (for example, body mass index, blood pressure) and 
routine laboratory results (for example, complete blood count or 
hemograms or blood biochemistry) and may additionally collect data 
on mortality and cause of death as well as other aging-associated out-
comes including multimorbidity, performance-based measures of 
physical and cognitive function, and frailty. Measures of disability 
in activities of daily living and instrumental activities of daily living 
provide information on a participant’s level of independence but also 
health deterioration over time.

Analytically, biomarkers are often considered at one point 
in time and related prospectively to future outcomes, such as 

multiple, diverse population samples). Thus, collaboration between 
basic scientists and clinical investigators is essential for successfully 
navigating this process.

We previously proposed a consensus framework for classifica-
tion and evaluation of aging biomarkers1. Now, we address biomarker 
validation as the next step in the clinical translation process. First, 
we review current efforts to validate predictive biomarkers of aging 
using population-based cohort studies and discuss challenges encoun-
tered during this process. We primarily focus on biomarkers that are 
blood-based, composite (as opposed to single-molecule markers) 
and based on ‘omic’ assays. Blood is widely accessible, obtained in a 
minimally invasive manner, and in constant contact with other tis-
sues, potentially providing information about the biological age of 
the entire organism (although this is still under active exploration11–13). 
Composite panels of biomarkers are more likely to capture systemic 
effects of the complex aging process than single biomarkers12–16, and 
those based on rapidly advancing high-throughput omic technologies 
and artificial intelligence (AI) are expected to substantially advance the 
performance and translational value of next-generation biomarkers 
of aging15. To facilitate and enhance rigor in the validation process17, 
we provide guidelines for standardization and harmonization of bio-
markers across populations with unique characteristics, and we make 
recommendations on the metrics that should be used to report their 
predictive performance.

Current status of validation efforts
Ideally, a biomarker measure should be robust against random and sys-
tematic sources of variability arising from technical and pre-analytical 
sources or application to different populations. Also, extensive infor-
mation should be available on covariates to be considered to optimize 
their performance. We briefly outline some important types of con-
ceptual and technical considerations and terminology important for 
biomarker validation in Box 1. Overall, a comprehensive process that 
encompasses multiple types of validation is desirable to establish reli-
ability, accuracy and clinical utility of a biomarker of aging.

To date, predictive validation of aging biomarkers (for their asso-
ciation with age-related outcomes) has mostly relied on data previously 
collected in observational cohort studies. This process is currently 
the most active area of research in the aging biomarker validation 
space as an important prerequisite to further validation and ultimate 
clinical use. Cohort studies typically collect samples and clinical data 
on health and functional status at multiple points in time and allow 
assessment of association and predictivity of biomarkers for multiple 
health outcomes across different populations as well as the identifica-
tion of relevant covariates. We focus on cross-population validation 
(that is, validation in more than one cohort) because it is the most 
robust approach for validation of blood-based biomarkers of aging in 
retrospective observational studies. To contextualize recommenda-
tions outlined in later sections, we first outline the current state of 
biomarker validation efforts (including different data sources) and 
discuss challenges to progression in this field.

Application of different data sources and study designs
The development of early biomarkers of aging was facilitated by 
open-access availability of large datasets (such as those stored within 
the Gene Expression Omnibus18), many of which are derived from 
cross-sectional studies. Cross-sectional studies provide a snapshot 
in time of variable measurements and corresponding phenotypic 
data (Fig. 1a). Such studies identified many biomarkers that correlate 
with chronological age. These include several soluble biomarkers of 
inflammation (for example, interleukin-6 (IL-6) or C-reactive protein) 
or hormonal status (such as fasting insulin and dehydroepiandros-
terone sulfate). Early ‘first-generation’ epigenetic biomarkers were 
also used to predict chronological age. However, cross-sectional age 
associations can be biased by secular trends and selective attrition 

Box 1

Types of biomarker validation 
relevant to biomarkers of aging

Biological validation evaluates the extent to which the measurement 
reflects fundamental knowledge about the biology of aging. Biomarkers 
can be particularly insightful if they lie within a pathway that is causal to, 
rather than merely associated with, aging.

Cross-species validation involves assessing the functionality of a 
biomarker in multiple species. If a pathway associated with a biomarker is 
phylogenetically conserved, it is more likely to be connected with aging as 
a universal phenomenon1,77.

Predictive validation involves unbiased testing of the performance 
of the predictive model underlying the biomarker to predict a future 
aging-associated outcome. For instance, HRs or time to event may 
be evaluated. Ideally, a true external predictive validation is carried 
out using independent data that were not used to train the model 
(often using machine learning or statistical methods). In the context 
of aging biomarkers, most predictive validation has been performed 
using retrospective analysis, but future studies should consider 
performing predictive validation by tracking aging-associated outcomes 
prospectively.

Analytical validation assesses the accuracy and reliability of the methods 
used to measure the biomarker, including sample collection and storage 
methods, analytical assays and covariates considered. This process aims 
to establish standard measurement practices and determine the precision, 
sensitivity, specificity and reproducibility of the assay.

Clinical validation aims to determine the clinical utility of a biomarker, 
that is, whether using that biomarker in a given setting allows for a better 
understanding of the ongoing disease or process that may contribute 
to better health outcomes. For instance, clinical validation of an aging 
biomarker may involve establishing that the biomarker has better 
predictive power for aging-associated outcomes than does chronological 
age.
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disease onset, change in physical and cognitive function over time or  
mortality. However, a more informative approach is to con-
sider repeated measures obtained from the same participants at  
regular intervals. This approach allows the study of the relation-
ship between biomarkers and the time trajectories of clinical out-
comes, which provide the best approximation of the ‘pace of aging’20.  
Therefore, longitudinal cohort data can uniquely support the devel-
opment and validation of biomarkers of aging, such as prospective 
validation against multiple different outcomes and across independ-
ent populations. Additional approaches focus on resilience, healthy 
aging21,22 or other aging-related outcomes23–25. Moreover, outcomes 
related to healthcare resource utilization, such as the rate of hospital 
admissions and use of emergency rooms, may also be highly relevant. 
The prioritization of aging-associated outcomes and information 
on (functional) aging trajectories separate from mortality could 
make such biomarkers even more appealing for translation to clini-
cal studies.

Many cohort studies establish biobanks that safely store bio-
specimens that can then be accessed in the future to test new hypoth-
eses or employ newly available technology for analysis. Biobanks are 
invaluable resources for biomarker research (particularly when it 
comes to testing and validation), especially if linked clinical and/or 
omic data and follow-up samples and/or data are available. In addi-
tion to the samples collected as part of a standard cohort study with 
specific research questions, large-scale, general-purpose biobanks 
also exist and can be useful for biomarker development. For example, 
the UK Biobank contains in-depth genetic and health information and 
holds biological samples from half a million UK participants. Multi-
ple studies have already evaluated omic-based predictors of various 
aging-related outcomes in the UK Biobank26–28. With the decreasing 
costs of measuring biomarkers, this and other biobanks are currently 
expanding their range of available omics data29. The Finnish FinnGen 
cohort (n = ~500,000)30, BioBank Japan (n = ~260,000)31 and the Mass 
General Brigham Biobank (n = ~135,000)32 have also recently generated 
large multiomics datasets, which are expected to be used to validate 
multiple biomarkers for aging-related outcomes. Some repositories 
are taking steps to organize their data in well-documented and acces-
sible databases: for instance, the US National Institute on Aging has 
launched complementary translational longevity initiatives to generate 
large-scale, cross-species, multiomics datasets.

The current state of cross-population validation studies
Even with existing cohort studies and biobanks, systematic 
cross-population validation remains relatively limited. Nevertheless, 
several biomarkers of aging have been tested across multiple cohorts, 
with the most commonly examined outcome being all-cause mortality. 
Although there are issues surrounding mortality as an endpoint, it has 
the advantage of being clearly defined.

A representative list of studies validating blood-based compos-
ite biomarkers for prediction of future mortality is shown in Table 1. 
Many of these studies were conducted by researchers who developed 
the biomarker and validated that specific biomarker across multiple 
cohorts or by researchers who used biomarkers developed by others 
and compared multiple biomarkers within one cohort, with differ-
ences between the two approaches illustrated in Fig. 2. In addition, 
a representative list of biomarkers of aging that have been tested 
across multiple cohorts is shown in Supplementary Table 1 (cohorts 
are described in Supplementary Table 2). Our intention here is not to 
systematically review previous studies or perform a meta-analysis; 
rather, the studies considered were selected to illustrate the chal-
lenges of validating biomarkers of aging in a reliable, comparable 
and generalizable manner.

In studies validating blood-based biomarkers, most reported 
hazard ratios (HRs) for prediction of mortality risk are in the moder-
ate range; however, a few studies have reported impressive metrics 
that render those biomarkers good potential candidates for use in 
preclinical and clinical studies. For example, Huan et al.33,34 and Deelen 
et al.35 reported increased mortality risk (HRs of 1.85 and 2.73) for their 
epigenetic and metabolomic biomarkers, respectively. Nevertheless, 
these values should be interpreted with caution because they rely on 
different units of measure; they will need to be substantiated by inde-
pendent validation in a different cohort, and their performance needs 
to be compared with other biomarkers using consistent reporting 
measures. Thus far, relatively few studies have compared individual 
(composite) biomarkers across multiple cohorts or multiple bio-
markers across the same cohort using standardized and equivalent 
measurement units that make them fully comparable33,36,37. We argue 
that studies featuring systematic and comprehensive benchmark-
ing of diverse biomarkers of aging across many large cohorts with 
extended follow up (>10 years) are needed to substantially advance 
the field (Fig. 2a).

Study
timeline

Measurement
Chronological age
or health status
at sampling
time point

a  Cross-sectional b Longitudinal

Study
timeline

Measurement
Health
status
at later
time point

Biomarkers

Aging Aging outcomes

Repeated measurements
(recommended)

Predictive validity
cannot be evaluated.

Biomarkers

Aging Aging outcomes

Predictive validity
can be evaluated.

Fig. 1 | Different approaches to cohort study design in the context of 
biomarkers of aging. Biomarkers of aging are commonly validated using 
cross-sectional or longitudinal study designs. a, Cross-sectional studies involve 
measurement of biomarkers and chronological age or aging-related outcome 

data at a single time point. These data can only support association of these 
measures at that time point. b, Longitudinal designs, on the other hand, allow for 
assessment of predictive validity of biomarkers measured at one time point and 
future aging-related outcomes.
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Table 1 | Validation studies of blood-based composite biomarkers based on future mortality

Study Biomarker Validation set Validation 
sample size

Events (%) Adjusted HR HR adjusted for (in 
addition to age)

HR unit/grouping

Levine et al.78 Phenotypic age NHANES IV 6,209 1,052 (16.9%) 1.09 − Per unit increase (year)

Sebastiani et al.79 ‘Agglomerative algorithm’ FHS 2,734 657 (24.0%) 0.68–1.23 (varying) Sex Cluster 1 versus clusters 
2–26

Mamoshina et al.80 BloodAge NHANES 2,768 873 (31%) 1.67 Sex AgeDev < −5 versus >+5 
years

Levine et al.78 PhenoAge WHI, FHS, JHS, 
NAS

8,965 2,074 (22.8%) 1.05 (1.04–1.05) Ethnicity Per unit increase (year)

Lu et al.25 GrimAge FHS, WHI, JHS, 
InCHIANTI

7,375 1,848 (25.1%) 1.10 (1.09–1.12) Ethnicity Per unit increase (year)

Lu et al.4 GrimAge2 FHS, WHI, JHS, 
InCHIANTI, NAS

10,065 3,900 (39%) 1.10 (1.09–1.10) Sex, ethnicity Per unit increase (year)

Zhang et al.81 DNAmRS KORA 1,727 61 (3.5%) 10.95 (3.09–38.84) Sex Scores 0–1 versus 5+

Belsky et al.20 DunedinPACE
NAS 771 354 (45.9%) 1.26 (1.14–1.40) Sex Per s.d. increase

FHS 2,471 575 (23.3%) 1.65 (1.51–1.79) Sex Per s.d. increase

Bernabeu et al.82 bAge LBC, FHS, WHI 4,125 1,653 (40.1%) 1.52 (1.44–1.59) Sex Per s.d. increase

Deelen et al.35 MetaboHealth score FINRISK 1997 7,603 1,213 (16.0%) 2.73 (2.60–2.86) Sex Per unit increase (scores 
−2 to 3)

van den Akker et al.83 MetaboAge score LLS_SIBS 811 793 (97.7%) 1.25 (1.14–1.37) Sex Per unit increase (year)

Balasubramanian 
et al.6

M-metabo-score WHI-HT 1,355 685 (50.6%) 1.95 (1.46–2.62) Clinical and lifestyle 
risk factors

Highest versus lowest 
quartile

Tanaka et al.5 ‘Proteomic signature’ InCHIANTI 997 504 (50.6) 1.03 (1.02–1.04) Sex, study site Per unit increase (year)

Huan et al.33 ‘Integrative biomarker’ ARIC 969 331 (34.1%) 1.85 (1.44–2.37) Sex, clinical factors Per s.d. increase

Li et al.84

DNAmAge (Horvath) SATSA 387 240 (62%) 1.17 (1.01–1.36)

Sex, education, 
lifestyle risk factors Per s.d. increase

DNAmAge (Hannum) 1.17 (0.98–1.40)

PhenoAge 1.26 (1.08–1.47)

GrimAge 1.39 (1.11–1.75)

Hillary et al.85

EEAA GS 2,578 57 (2.2%) 1.39 (1.12–1.72)

Sex Per s.d. increase

PhenoAge 1.38 (1.11–1.73)

GrimAge 1.70 (1.35–2.14)

DunedinPoAm 1.69 (1.30–2.18)

DNAm estimate of 
telomere length

0.81 (0.63–1.04)

McCrory et al.86

DNAmAge (Horvath) TILDA 490 45 (7.2%) 1.03 (0.74–1.44)

Sex, lifestyle risk 
factors Per s.d. increase

DNAmAge (Hannum) 0.92 (0.67–1.28)

PhenoAge 1.13 (0.81–1.57)

GrimAge 1.91 (1.23–2.96)

Föhr et al.87
DNAmAge (Horvath) FITSA 413 156 (35.2%) 1.05 (0.89–1.23) Family relatedness, 

lifestyle risk factors Per s.d. increase
GrimAge 1.31 (1.08–1.59)

Wang et al.37

IEAA NAS 737 337 (45.7%) 1.08 (0.92–1.28)

Clinical and lifestyle 
risk factors Per s.d. increase

EEAA 1.10 (0.93–1.3)

PhenoAge 1.17 (0.98–1.41)

GrimAge 1.56 (1.24–1.96)

DNAmRS 1.37 (1.06–1.78)

Studies with ≥10-year follow up are listed. Hazard ratios (HRs) derived from Cox proportional-hazard regression for several biomarkers of aging against all-cause mortality are shown. We aimed 
to include the most representative adjustment model for studies that report multiple models and report the HR as the most frequently used metric for assessing performance of a biomarker 
with regard to time-to-event analysis. Note that reported HRs are not directly comparable because they refer to different units of measure of the predictor. In addition, many factors (for 
example, population characteristics and data preprocessing) may influence predictive performances. Abbreviations: AgeDev, age deviation; EEAA, extrinsic epigenetic age acceleration; IEAA, 
intrinsic epigenetic age acceleration; s.d., standard deviation. Cohorts: NHANES, National Health and Nutrition Examination Survey; FHS, Framingham Heart Study; FINRISK, National FINRISK 
Study (Finland) for non-communicable disease intervention; WHI, Women’s Health Initiative; WHI-HT, Women’s Health Initiative-Hormone Therapy; JHS, Jackson Heart Study; NAS, Normative 
Aging Study; InCHIANTI, Invecchiare in Chianti; KORA, Cooperative Health Research in the Region Augsburg; LBC, Lothian Birth Cohort; LLS_SIBS, Leiden Longevity Sibling Study; ARIC, 
Atherosclerosis Risk in Communities Study; SATSA, Swedish Adoption/Twin Study of Aging; GS, Generation Scotland; TILDA, the Irish Longitudinal Study on Ageing; FITSA, the Finnish Twin 
Study on Ageing.
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Challenges for validation of biomarkers of aging
Despite ongoing progress, comparing the predictive strength of bio-
markers of aging remains challenging. Even for a well-defined outcome 
such as mortality, studies evaluating predictive performance of omic 
biomarkers have provided heterogeneous results. Potential reasons for 
this inconsistency include different study populations with different 
characteristics; differences in recording, formatting and coding of 
molecular and outcome data; differences in preprocessing and bio-
marker formulation; and different approaches to validation analyses 
and reporting (Fig. 2b and Table 2). In the following sections, we focus 
on each one of these problems.

Population-specific characteristics
Predictive performance of a biomarker of aging may vary by charac-
teristics of the underlying population, including age demographics, 
ethnicity, health and disease status or physical and cognitive func-
tion. For instance, in a population with high exposure to pollution or 
environmental contaminants, cancer biomarkers will appear to be 
highly predictive of all-cause mortality even if they are not so in the 
general population. A related challenge is the lack of participant diver-
sity in many large cohort studies and biobanks that suffer from heavy 
over-representation of people with European ancestry and predomi-
nantly white participants. Results from these studies may not apply to 
non-white, ethnically diverse individuals, which limits their external 
validity. Exceptions featuring more diverse populations or a focus on 

minority populations exist, such as the Jackson Heart Study (https://
www.jacksonheartstudy.org/) or Healthy Aging in Neighborhoods of 
Diversity across the Life Span38, but many more studies are needed to 
understand similarities and differences in biomarkers of aging across 
diverse populations. Notably, aging biomarkers that are reproducible 
across population groups likely reflect fundamental mechanisms of 
aging biology; such biomarkers would be broadly useful for both clini-
cal and basic research applications.

Molecular and outcome data
Cohort studies are generally designed to address specific sets of sci-
entific questions. Therefore, each cohort or biobank features unique 
content, collected and recorded in a unique manner to address these 
questions. Even studies carrying out similar analyses may use different 
approaches. For example, epigenetic data could be collected using 
different microarray assays (27K, 450K, 850K) or by isolating DNA with 
different methods, which produce slightly different estimates even for 
epigenetic targets shared between platforms39. Similarly, metabolomics 
or proteomics data could be collected from plasma or serum, leading 
to different data distributions35, measured using different technolo-
gies (for example, mass spectrometry or aptamer-based assays) or 
tagged using different nomenclature40. Unfortunately, no harmoniza-
tion standards currently exist for molecular data and aging-associated 
outcomes for the purpose of validating biomarkers of aging. Existing 
programs and consortia, such as Reference Set of Metabolite Names 

Evidence for association with aging-related outcomes
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Fig. 2 | Validation of biomarkers of aging with different numbers of cohorts 
or biomarkers. a, Most existing biomarkers have been developed using data 
from a single cohort, and some have been validated in a second external cohort. 
Analysis of multiple biomarkers across multiple cohorts allows for a meta-

analysis comparison. b, Biomarker validation studies need to consider different 
sources of variation, such as heterogeneity in population characteristics, sample 
collection, data preprocessing, analyses and reporting.

http://www.nature.com/naturemedicine
https://www.jacksonheartstudy.org/
https://www.jacksonheartstudy.org/


Nature Medicine

Review article https://doi.org/10.1038/s41591-023-02784-9

(RefMet41), Consortium of Metabolomics Studies42, Cohorts for Heart 
and Aging Research in Genomic Epidemiology (CHARGE43), Common 
Infrastructure for National Cohorts in Europe, Canada, and Africa44, 
Trans Omics for Precision Medicine program (TOPMed45), UK Longitu-
dinal Linkage Collaboration, University Biobank Limburg (UBiLim46), 
Biobank Standardisation and Harmonisation for Research Excellence 
in the European Union (BioSHaRE-EU47) and Biobanking and Biomo-
lecular Resources Research Infrastructure Netherlands (BBMRI-NL), 
are developing standards for organization of specific data types to 
facilitate large-scale collaborations in other fields, but no such efforts 
have been initiated in geroscience.

Biomarkers constructed with time to mortality as a reference out-
come also tend to predict chronic diseases and functional and cognitive 
outcomes independent of chronological age, suggesting that they 
capture a dimension related to overall health1,36. However, the direct 
use of non-mortality aging-related outcomes, such as multimorbidity, 
poor mobility and frailty, may better capture information on the pace 
of aging and may be more useful for clinical applications. These could 
include internationally recognized scoring systems of multimorbidity, 
frailty, disability, cognition48 or quality of life measures as well as more 
health-focused metrics (such as vitality, resilience and healthspan), 
although no consensus yet exists on how to quantify the latter two49. 
Beyond cohort-specific challenges, access to cohort data remains a 
general ongoing issue: applying for access to many government-funded 
datasets often requires lengthy paperwork and review processes and 
can often span several months or years.

Biomarker procedures and formulations
Statistical and machine learning models used to identify or learn the 
relation between biomarkers and aging outcomes are still in early stages 
of development and validation, and many modeling challenges remain 
to be addressed. For example, many existing models assume a linear 
relation between biomarkers of aging and the likelihood of aging out-
comes throughout the lifespan, while recent studies have discovered 
multiple examples of non-linearity5,12,50. Technical considerations sur-
rounding data preparation also pose challenges. For instance, recent 
work has demonstrated that calculating principal components from 
CpG-level data as input for biological age prediction can improve test–
retest reliability of epigenetic biomarkers51. These and other unique 
transformations of individual measurements make cross-comparison 
of composite biomarkers challenging. Moreover, biomarkers or their 
components may be sensitive to underlying sample composition. For 
example, there is evidence that age-related methylation varies across 
different circulating immune cells52. Therefore, comparative or vali-
dation studies should always carefully adjust for the proportions of 
different types of circulating cells. Studies may also treat missing data 
or repeated measurements for biomarkers or outcomes differently, 
potentially influencing power or skewing performance estimates. 
This issue is particularly important for proteomic assays that tend to 
generate many values ‘below the threshold of detection’ that may not 
be random but rather convey important information. Finally, there is 
currently no guidance on how to best integrate longitudinal repeated 
measures from the same individual and whether trajectories or unique 
values should be considered.

Study design and reporting
Several aspects of study design, such as follow-up time, number of 
events and bias in mortality reporting may introduce variability across 
studies. Differences in statistical approaches are also a notable source 
of variation. For example, different validation studies often account for 
distinct potential effect modifiers by controlling, adjusting or strati-
fying for them. These factors are expected to affect the magnitude of 
the relationship between the omic biomarkers and aging-associated 
outcomes, representing another challenge for comparison of bio-
markers in (and across) validation studies. Additionally, studies can 

report performance metrics such as HRs in different ways (for exam-
ple, per standard deviation (s.d.), compared to a reference group, or 
per-unit increase) using different adjustment strategies for covariates 
(Table 1). In Cox proportional-hazard regression models, biomark-
ers can be coded as continuous variables (standardized or not) or as 
ordinal variables that capture quantiles of biomarker level or even as 
time-dependent covariates. The former approach provides informa-
tion on risk estimates per one-unit difference in biomarker level (for 
example, per s.d.), while the second considers one level (typically the 
lowest quantile) as a reference group. These inconsistencies, which 
also plague other fields, have hindered reliable cross-comparison, 
benchmarking and meta-analysis of evaluated biomarkers of aging.

Recommendations for validation of biomarkers 
of aging
Cross-population validation of multiple biomarkers across several 
cohorts on a large scale is necessary but challenging and will require 
considerable coordinated effort and increased funding. Based on 
the current state of the field and the challenges outlined above, we 
provide the following recommendations (summarized in Table 2) for 
benchmarking and reporting of validation studies, grouped by target 
stakeholders.

Recommendations for biomarker developers
Before composite or algorithmic biomarkers are validated across 
populations, the underlying statistical or machine learning models 
capturing the biological relation between biomarkers and outcomes 
need to be verified. It is important to examine the extent to which an 
association could be reasonably attributed to the underlying biology. 
We recommend that biomarker developers verify that the statistical 
assumptions of their models reflect the expected biological phenom-
ena to the extent of our current knowledge. For example, as recent 
studies continue to reveal unique age-dependent epigenetic changes 
during different phases of life, it is becoming clear that non-linear or 
piecewise epigenetic biomarkers might represent the whole human 
lifespan more accurately than those that assume a linear relationship 
with age across the life course53,54.

Successful validation of biomarkers requires full transpar-
ency of the methods used for their development, computational 
preprocessing and analysis, and verification of their predictive  
validity in multiple independent populations. Hence, preprocess-
ing pipelines should follow best-practice guidelines that ultimately 
enable data harmonization55. For example, the treatment of miss-
ing or repeated measurements (for example, using imputation or 
machine learning methods56,57), data normalization and quality 
control influence predictive performance results; therefore, it is 
important to establish and follow standards and best practices for 
these steps58. Similarly, fully specified computational procedures 
(formulations) for composite biomarkers should be made avail-
able publicly (as recommended for all omic tests by the US National 
Academy of Science, Institute of Medicine17) to allow for compu-
tation of biomarker scores independently by other researchers, 
without the need to upload or transfer data to biomarker develop-
ers. In addition, biomarker formulation should allow for simple 
implementation across new datasets. Indeed, most omic biomark-
ers could be formulated in standardized mathematical terms (see 
harmonization efforts by ClockBase for epigenetic biomarkers20 
and MiMIR for metabolomic biomarkers59) and standardized soft-
ware packages, which enable streamlined calculation of various bio-
markers including blood biochemistry (for example, BioAge60) and 
epigenetics (for example, Biolearn at https://bio-learn.github.io  
(ref. 61) and methylCIPHER62). We believe that such a process of vali-
dation and implementation would provide even stronger results if it 
were undertaken according to guidelines that are widely discussed 
and adopted by the scientific community.
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To support future validation studies, we recommend that develop-
ers consider methods and data sources that improve the likelihood of 
future generalizability, cross-population validity and potential clinical 
validity of their biomarkers. Currently, epigenetic markers are the most 
commonly proposed and investigated type of composite biomarker1. 
We recommend developing methods to address many widely acknowl-
edged challenges with these and other biomarkers, including interpret-
ability2,19 and technical robustness20,51. Studies involving longitudinal 
sample collection may be particularly useful for this purpose, as the 
resulting data can enhance our understanding of the dynamic proper-
ties of these biomarkers. In addition, we recommend the use of other 
complementary omics data, including metabolomics, proteomics, 
transcriptomics and lipidomics, the biological interpretation of which 
is often less complex, to develop biomarkers capable of capturing 
aspects of aging that may not be best reflected by epigenetic data63. As 
the costs of many omic assays are decreasing and cohorts and biobanks 
are increasingly incorporating multiple data modalities (Table 3), we 
expect multiomic biomarkers to become common in the near future, 
emphasizing the need for accessible and standardized approaches.

Recommendations for data maintainers
Successful validation of biomarkers depends on access to data and 
harmonization of aging-related phenotypic and molecular data across 

relevant cohorts. Procedures for easy data sharing that enable more 
timely and broad access while maintaining privacy of individual human 
data (such as the National Heart, Lung, and Blood Institute BioData 
Catalyst64) should be widely adopted. Data repositories can and should 
provide transparent information on available data and data formats as 
well as data-access criteria and review processes, including expected 
review time based on historical statistics. In addition, synthetic datasets 
(with the same data structures and distributions), data safe havens 
(that is, secure storage and computing for sensitive data) and federated 
access (unified central access) would ideally be provided to facilitate 
broader access to the data. Providing one or more of the above should 
be incentivized by funding agencies and other financial supporters. 
For sensitive data with controlled access, federated analysis, in which 
data remain decentralized on host institution servers but are made 
available for analysis in a privacy-preserving manner65, may offer a 
suitable compromise, especially using cloud-based methods. Rather 
than requesting transfer of sensitive data, individuals aiming to validate 
a biomarker could provide the formulation of the biomarker to data 
owners and/or conduct their analysis in a secure environment, with 
access to only summary or synthetic data.

Many initiatives (for example, RefMet, CHARGE, TOPMed, UBiLim, 
BBMRI, BioSHaRE-EU) have taken steps to standardize biomarker 
nomenclatures or cohort or biobank data to facilitate cross-population 

Table 2 | Challenges and associated recommendations for validation of biomarkers of aging

Challenge Target stakeholder Recommendation Example

1. �Population-specific 
characteristics

Data maintainers 1. �Adopt data-sharing mechanisms that 
enable timely and broad access to enable 
validations using many populations.

Provide transparent information on available data as well 
as data-access review processes including expected 
review time.

Validation study teams 2. Include multiple diverse populations. Validate biomarkers across multiple diverse cohorts and 
report stratified analyses.

2. �Molecular and  
outcome data

Data maintainers 3. �Follow FAIR67 data principles, provide a 
detailed metadata and data dictionary and 
use standard data formats.

Ensure that data are FAIR67 by providing appropriate 
documentation and guidance: for example, use Gene 
Expression Omnibus data format for gene expression 
(transcriptomics) and epigenetics data.

Biomarker developers 4. �Verify assumptions of statistical/machine 
learning models used to identify/learn the 
relation between biomarkers and aging 
outcomes.

Consider non-linear or piecewise models for biomarkers 
with established non-linear relation with aging outcomes.

Validation study teams

5. �Standardize and harmonize individual 
biomarker measurements and aging 
outcomes in different datasets.

Extend biomarker-standardization programs (for example, 
RefMet) and consortium data-harmonization efforts by 
CHARGE, TOPMed, UBiLim, BBMRI and BioSHaRE-EU 
toward developing assay-agnostic and generalizable 
biomarkers.

6. �Consider aging outcomes beyond 
mortality.

Consider multimorbidity, frailty, disability, quality of life 
measures or health-focused metrics, such as vitality, 
resilience and healthspan.

3. �Biomarker 
procedures  
and formulations

Biomarker developers 7. �Improve transparency of sample 
preparation, data processing and 
biomarker formulation.

Provide fully specified computational procedures, 
including details on the normalization method and 
treatment of missing measurements.

Validation study teams 8. �Carry out post hoc harmonization of 
composite biomarker formulations

Develop/extend packages or solutions for computation of 
multiple biomarkers, for example, methylCIPHER, BioAge, 
ClockBase, MiMIR and Biolearn.

4. �Comparability of 
validation studies

Biomarker developers 9. �Improve interpretability, generalizability 
and robustness.

Incorporate various omics data from diverse populations 
during biomarker development.

Validation study teams

10. �Account for potential effect modifiers by 
controlling, adjusting for or stratifying 
based on them.

Report HRs for chronological age- and sex-adjusted 
models.

11. Standardize the validation process 
including:
a. Biomarker formulation,
b. Minimal requirements,
c. Statistical analysis and
d. Performance metrics.

‘Lock down’ predefined biomarker formulation and 
conduct validation studies according to defined 
standards, for example, minimum follow-up time for 
aging outcome, Cox proportional-hazard regression and 
HRs per s.d. and absolute unit increase.

12. Report the results comprehensively and 
appropriately.

Follow established guidelines for reporting of 
observational studies, such as STROBE.
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studies, often following rigorous guidelines for retrospective data 
harmonization (such as Maelstrom66). While these post hoc efforts are 
needed to improve existing data, cohort or biobank data maintainers 
may facilitate the process by following best practices in recording 
and reporting biomarkers and aging outcome measures from the 
inception of their biobanks or cohort studies. In particular, data own-
ers should aim for alignment with FAIR data principles (ensuring that 
data are findable, accessible, interoperable and reusable67), provide 
machine-readable metadata and data dictionaries that allow for harmo-
nization and make available records of data structure in data descrip-
tion publications. Especially for older or ongoing longitudinal studies 
with long follow up, the above steps represent a considerable challenge 
that requires increased support from the aging research community. 
Success with the above efforts would increase data utility, particularly 
for federated learning and analysis across populations, which require 
standardized data.

Recommendations for cross-population validation study 
teams
Biomarkers of aging should be evaluated across multiple diverse 
populations to account for differences across genetic ancestries, sex, 
geographic contexts, environmental or lifestyle factors, life stages and 
health or disease states. This step is critical because even seemingly 
established biomarkers may not be valid in all human populations. For 
example, the APOE4 allele is the strongest risk factor for Alzheimer’s 
disease risk in white populations, but the association is substantially 
weaker in African American and Hispanic populations68. Moreover, in 
Tsimane horticulturalists (a subsistence population in Brazil), APOE4 
appears to be protective against cognitive decline69. As mentioned 
above, many existing composite biomarkers of aging have been trained 
in cohorts of predominantly white, European ancestry. A similar bias 
in the design of genetic studies has resulted in the development of 
polygenic risk scores that have diminished predictive accuracy in popu-
lations with non-European ancestry70.

While many composite biomarkers of aging have shown some 
evidence of comparable predictive accuracy across genetic ancestry 
populations25,71,72, establishing diverse cohorts with non-European 
ancestries to validate new composite biomarkers of aging remains 
a priority. Other key axes for cross-validation could include climate 
zones, country or continent and exposure levels to various chemi-
cal or biological risk factors. This will require efforts to establish 
resources and research capacity in various geographical regions 
and minority populations. In addition to commonly used cohorts, 
many other cohort studies or biobanks (many of which are focused 
on recruiting diverse or minority populations) may be suitable for 
validation studies of biomarkers of aging. Some of these have already 
added or are in the process of adding (multi)omics data (Table 3), 
which will help to further improve development or validation of 
biomarkers of aging.

Efforts by developers to standardize various aspects of biomarker 
validation, including biomarker formulation and statistical analyses 
(described above), will allow for a reliable comparison across studies. 
For instance, biomarker formulations should be established ‘a priori’ 
and not be further modified during validation (in other words, formu-
lation ‘lock down’17). Additionally, statistical analysis outputs, such 
as hazard ratios, should be reported for unadjusted, chronological 
age- and sex-adjusted and fully adjusted models, permitting a broader 
cross-comparison of studies. Studies may additionally account for 
other factors mentioned above, including sample composition. To 
ensure comparability of performance, the community needs to take 
steps to agree on the minimal set of covariates to be included in the 
analysis and the use of stratified analyses by subgroups, such as age, 
sex and/or race. Finally, reporting HRs per s.d. and the absolute unit 
differences in biomarker levels (for example, 1 s.d. and one unit of 
increase in the biomarker) allows for easier comparison of different 

biomarkers and meta-analysis. While perfect standardization may not 
be realistically achievable, moving in the direction of standardization 
will at least enable the qualitative assessment of the extent to which 
results in different populations converge.

Correct reporting of study results is vital to enable 
cross-population validation. We recommend that investigators follow 
established guidelines for reporting of observational studies, such as 
Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE)73, to enhance transparency and reproducibility of findings. 
All populations should be sufficiently described, either in summary 
or individually, when including multiple cohorts in one study. When 
focusing on mortality as a key aging-associated outcome, studies 
should report all-cause mortality based on reliable information and, 
when possible, cause-specific mortality, which may differ based on 
underlying population characteristics. Several multiomics datasets 
offer information on aging-related outcomes separate from mortal-
ity (Table 3) that may be used instead of or in addition to mortality. 
Analysis in subgroups with certain (chronic) conditions that lead to 
accelerated aging (for example, infection with human immunodefi-
ciency virus74) will inform on whether these changes in aging biomarker 
levels are associated with increased morbidity or mortality or whether 
bespoke biomarkers may be required in those groups of individuals to 
predict clinical outcomes. At a minimum, results should be stratified 
and reported separately by age group and sex, given the clear sexual 
dimorphism in aging. Additionally, extended reporting of stratified 
analyses by various demographics (for example, ethnicity, country 
or pre-existing health status) is recommended to evaluate generaliz-
ability, as models that perform well across distinct strata are more likely 
to have good external validity75. Reporting highly stratified results will 
also facilitate meta-analyses.

Outlook
The past decade has seen substantial progress in the development of 
new blood-based biomarkers of aging. Despite the tremendous prom-
ise of these tools for use in trials for longevity interventions, major 
roadblocks persist in translating them to clinical use. Our article high-
lights challenges encountered in the validation of these biomarkers 
and proposes efforts to overcome these barriers. Addressing even 
relatively simple challenges, such as standardization of effect size 
reporting, stands to greatly benefit the comparison and validation of 
biomarkers of aging. We anticipate that studies benchmarking multiple 
biomarkers of aging, especially those using different technologies 
(for example, metabolomics, proteomics, epigenetics and multi-
omic approaches), across multiple populations will provide a more 
comprehensive understanding of their performance and robustness. 
Performing such large-scale comparative studies is a key priority to 
progress in this field but will require increasing cooperation between 
research groups and the creation of incentives for transparent sharing 
of biomarker formulations and data. Efforts toward harmonization will 
require endorsement across diverse stakeholder groups, including 
biomarker developers, data owners and epidemiological researchers, 
and may ultimately enable the goal of identifying the most promising 
biomarker candidates for clinical prioritization.

We further recommend that future work should aim to incorporate 
more clinically relevant and potentially actionable outcomes instead 
of or in addition to mortality. Many cohort studies provide alternative 
health outcome data (Table 3) that may support this goal, including 
data on specific chronic diseases, multimorbidity and organ-specific 
physiological integrity as well as physical and cognitive function. How-
ever, agreement on the standard definition and operationalization of 
these outcomes would be highly desirable and ensure true comparabil-
ity. Prospective studies that develop individual, longitudinal profiles 
of biomarkers will provide a resource that is urgently needed in the 
field. Such studies will be critical, particularly with respect to assess-
ing whether biomarkers are sensitive to physiological changes such 
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as those induced by longevity interventions and gerotherapeutics or 
other preventive measures.

We anticipate that the ideal biomarkers of aging shall have moder-
ate to strong associations with chronological age and predict multiple 
aging-related outcomes beyond mortality, such as functional decline, 
frailty, chronic diseases and disability and (multi)morbidity. They 
should be sensitive to upstream factors thought to influence aging 
such as stress, adverse events, environment, genetics and lifestyle, and 
they should mediate the relationship between these factors and aging 
outcomes. They should do so in many diverse populations and should 
do so relatively similarly across populations. Biomarkers of aging that 
meet these requirements should be prioritized for validation as screen-
ing and diagnostic biomarkers and eventually as surrogate endpoints 
in clinical trials. While a clear roadmap to realize this long-term goal 
does not yet exist, harmonization and standardization of biomarkers 
and population data across the field will greatly enhance our ability 
to identify, characterize and validate the most promising biomarker 
candidates.

As biomarkers of aging move toward clinical implementation, sev-
eral key questions remain to be addressed. First, there is no widespread 
agreement on the extent to which biological age may be captured by 
a single biomarker. Further validation of aging biomarkers through 
their use in clinical and epidemiological studies will help establish 
whether a single biomarker or multiple complementary biomarkers 
may be most useful. A looming question is whether or how biomark-
ers of aging should be integrated into the current disease-centric and 
disease-specific approach to healthcare. A shift toward holistic pre-
vention, in line with the geroscience hypothesis, has the potential to 
substantially change public health and expand the portion of life free 
of diseases and disability but will require endorsement across diverse 
stakeholder groups, particularly in the clinical realm. Next, the clinical 
utility of biomarkers of aging remains to be validated using prospective 
clinical trials to demonstrate that they can indeed improve how patients 
feel, function and survive. Finally, while we focused on blood-based 
biomarkers, more studies investigating aging across various organ 
systems are warranted to enhance our understanding and the clinical 
potential of biomarkers of aging.

Conclusion
The translation of the science of aging to clinical applications holds 
substantial promises for the improvement of healthcare and the expan-
sion of health expectancy, with the potential to both reduce healthcare 
expenditure and improve population health76. An important prerequi-
site to accomplish this goal is the availability of robust biomarkers of 
aging, which requires a process of validation to advance these biomark-
ers into clinically valuable and actionable tools. It is our hope that the 
challenges we highlight and the recommendations we offer will aid in 
advancing biomarkers of aging into clinical tools that empower the 
action of health planners and healthcare providers.
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