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Abstract
Introduction Gut microbiota is, along with adipose tissue, recognized as a source for many metabolic and inflammatory 
disturbances that may contribute to the individual’s state of health.
Objectives We investigated in cross-sectional setting the feasibility of utilizing GlycA, a novel low grade inflammatory 
marker, and traditional low grade inflammatory marker, high sensitivity CRP (hsCRP), in reflecting serum metabolomics 
status and gut microbiome diversity.
Methods Fasting serum samples of overweight/obese pregnant women (n = 335, gestational weeks: mean 13.8) were analysed 
for hsCRP by immunoassay, GlycA and metabolomics status by NMR metabolomics and faecal samples for gut microbiome 
diversity by metagenomics. The benefits of GlycA as a metabolic marker were investigated against hsCRP.
Results The GlycA concentration correlated with more of the metabolomics markers (144 out of 157), than hsCRP (55 out 
of 157) (FDR < 0.05). The results remained essentially the same when potential confounding factors known to associate 
with GlycA and hsCRP levels were taken into account (P < 0.05). This was attributable to the detected correlations between 
GlycA and the constituents and concentrations of several sized VLDL-particles and branched chain amino acids, which were 
statistically non-significant with regard to hsCRP. GlycA, but not hsCRP, correlated inversely with gut microbiome diversity.
Conclusion GlycA is a superior marker than hsCRP in assessing the metabolomic profile and gut microbiome diversity. It is 
proposed that GlycA may act as a novel marker that reflects both the gut microbiome and adipose tissue originated metabolic 
aberrations; this proposal will need to be verified with regard to clinical outcomes.
Clinical trial registration ClinicalTrials.gov, NCT01922791, August 14, 2013
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1 Introduction

Low grade inflammation is a condition characterized by 
increased concentrations of serum inflammatory mark-
ers and it is associated with many metabolic disturbances 
like insulin resistance (Minihane et al. 2015). It is typically 
detected in obese individuals and has been linked with dis-
eases such as type 2 diabetes and dyslipidemia (Jung and 
Choi 2014). At present, the presence of low grade inflam-
mation is typically evaluated by increased concentrations of 
circulating high sensitive C-reactive protein CRP (hsCRP), a 
marker which is an early single acute phase protein produced 
in the liver as a response to the cytokine, IL-6 (Pearson et al. 
2003, Sproston and Ashworth 2018).

GlycA is a novel marker of low grade inflammation; it 
reflects the glycosylation of acute phase proteins (Bell et al. 
1987; Otvos et al 2015). Similar to hsCRP, the concentration 
of GlycA has been related to multiple metabolic aberrations 
including type 2 diabetes and cardiovascular diseases (Con-
nelly et al. 2017). As GlycA consists of a complex hetero-
geneous signal, it has been proposed to reflect better than 
hsCRP the systemic acute phase response (Otvos et al. 2015; 
Ritchie et al. 2015, 2019).

One of the well established sources for low grade inflam-
mation is adipose tissue (Calder et al. 2011). Recently, the 
gut microbiota, i.e. the composition and the metabolites pro-
duced by bacteria, has emerged as a significant contributor 
to low grade inflammation (Tilg et al. 2019). Changes in gut 
microbiota, e.g. lower gut microbiome richness, have been 
found in association with low grade inflammation, insulin 
resistance and dyslipidemia (Le Chatelier et al. 2013). In our 
previous study with overweight and obese pregnanct women, 
we detected an inverse association between GlycA and gut 
microbiota richness, analysed using 16S rRNA sequencing 
(Röytiö et al. 2017). Low grade inflammation may originate 
from the lower amount of bacteria supporting the intestinal 
barrier integrity (Tilg et al. 2019). Subsequently, lipopoly-
saccharide, LPS, may enter circulation and induce metabolic 
endotoxemia, i.e. a doubling or even trebling of the levels of 
highly antigenic LPS in the circulation (Cani et al. 2007).

The aim of this study was to investigate the extent to 
which GlycA and hsCRP reflect host metabolomics, ana-
lysed by NMR-approach and gut microbiome diversity, as 
determined by metagenomic analyses.

2  Subjects and methods

2.1  Participants and design

In this cross-sectional study, markers for low grade inflam-
mation and metabolomic profiles were analysed from fasting 

serum samples of women participating in a mother-infant 
dietary intervention trial being conducted in southwest 
Finland. This single-center trial was executed in the Turku 
University Hospital and University of Turku in Finland with 
recruitment between October 2013 and July 2017 (Clinical-
Trials.gov, NCT01922791). Details of research design and 
methods have been previously described (Pellonperä et al. 
2019). Of the 439 recruited women, 335 women at the base-
line (i.e. prior to intervention onset, gestational weeks mean 
13.8) were included in this study following the exclusion of 
women with self-reported acute infections, those who had 
used antibiotics within two weeks before and after the study 
visit to exclude those individuals who may have a nonsymp-
tomatic inflammation and those who had hsCRP ≥ 10 mg/l, 
indicative of a possible infection.

The characteristics of the women (Table 1), including 
age, education and smoking were collected from ques-
tionnaires. Prepregnancy BMI (kg/m2) was calculated by 
dividing self-reported weight in kilograms, obtained from 
women’s welfare clinic records, by height measured with a 
wall stadiometer to the nearest 0.1 cm at the first study visit. 
Dietary intake of fibre was calculated from three-day-food 
diaries recorded within a week prior to study visit.

2.2  Metabolomics

Fasting (10 h minimum) blood samples were drawn from the 
antecubital vein at early pregnancy (mean gestational weeks 
13.8), and the serum was separated and frozen in aliquots 
at − 80 °C until being analyzed for serum metabolomics. 

Table 1  Clinical and inflammatory characteristics of the women

Mean (SD)

Clinical characteristics
 Age (years) 30.9 (4.6)
 Prepregnancy BMI (kg/m2) 29.14 (3.81)
 Obese, n (%) 117/335 (35%)
 Highly educated, n (%) 192/300 (64%)
 Primipara, n (%) 164/335 (49%)
 Smoking before pregnancy, n (%) 73/302 (24%)
 Smoking at early pregnancy, n (%) 17/301 (5.6%)
 Gestational weeks at the study visit 13.8 (2.2)

Inflammatory and metabolomic markers
 hsCRP (mg/l), n = 335 4.69 (2.43)
 GlycA (mmol/l), n = 335 1.19 (0.10)
 LPS activity (EU/ml), n = 146 0.154 (0.04)

Gut microbiome metagenomic diversity
 Shannon gene diversity index, n = 321 16.71 (0.73)
 Gene-richness, n = 321 465,556.21 (107,818.11)
 Shannon species diversity index, n = 321 2.67 (0.31)
 Species richness, n = 321 242.64 (58.44)
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A high-throughput proton NMR metabolomics platform 
(Nightingale, Helsinki, Finland) was used to analyze the 
serum metabolic profile as described earlier (Soininen et al. 
2015). The analysis platform assesses 228 variables, includ-
ing biomarkers of lipid and glucose metabolism, amino 
acids, ketone bodies and GlycA. GlycA consists of a com-
plex heterogeneous nuclear magnetic resonance signal origi-
nating from the N-acetyl sugar groups present on multiple 
acute phase glycoproteins in the circulation; α1-acid glyco-
protein, haptoglobin, α1-antitrypsin, α1-antichymotrypsin 
and transferrin (Bell et al. 1987; Otvos et al. 2015).

2.3  Gut microbiome diversity

Fecal samples were collected in sterile plastic pots on the 
morning of the study visit at early pregnancy (mean gesta-
tional weeks 13.8), or on the previous evening, delivered 
to the study unit and kept at − 20 °C until DNA extraction. 
DNA was extracted from 50 mg of homogenized feces using 
a GTX stool extraction kit and a fully automated GenoX-
Tract machine (Hain Lifescience, Nehren, Germany) as 
previously described (Mokkala et al. 2016). Prior to extrac-
tion, mechanical lysis was performed by bead-beating the 
samples in ceramic bead tubes with MOBIO PowerLyzerTM 
24 Bench Top Bead-Based Homogenizer (MO BIO Labo-
ratories, Inc., USA). The DNA concentrations were meas-
ured with Qubit 2.0 dsDNA HS assay kit (Life Technolo-
gies), after which the DNAs were stored at − 80 °C until 
sequencing.

The genomic DNA was randomly sheared into fragments 
of approximately 350 bp. The fragmented DNA was used 
for library construction with NEBNext Ultra II Library Prep 
Kit for Illumina (New England Biolabs). The prepared DNA 
libraries were evaluated using Qubit 2.0 fluorometric quanti-
tation and an Agilent 2100 Bioanalyzer for the fragment size 
distribution. Quantitative real-time PCR (qPCR) was used 
to determine the concentration of the final library before 
sequencing. The library was sequenced using 2 × 150 bp 
paired-end sequencing on an Illumina HiSeq platform. The 
raw FASTQ files were quality controlled using KneadData 
(v. 0.6.1) to remove low-quality bases and reads derived 
from the host genome as follows: Using Trimmomatic (v. 
0.36), the reads were quality trimmed by removing Nex-
tera adapters, leading or trailing bases with a Phred score 
below 20, and trailing bases in which the Phred score over 
a window of size 4 drops below 20. Trimmed reads shorter 
than 100 bases were discarded. Reads that mapped to the 
human reference genome GRCh38 (with Bowtie2 v. 0.2.3.2 
using default settings) were also discarded. Read pairs in 
which both reads passed filtering were retained; these were 
classified as high quality non-host (HQNH) reads. HQNH 
reads were mapped to the integrated gene catalog (IGC) (Li 
et al. 2014) using BWA mem (v. 0.7.16a) with options to 

increase accuracy (-r 1 -D 0.3). PCR/optical duplicates were 
removed using samtools (v. 1.6). A read pair where both 
reads had a mapping quality (MAPQ) ≥ 20 and an align-
ment of at least 100 bp and with ≥ 95% identity to a single 
IGC gene was considered mapped. However, the mapping 
was rejected if > 10 bases at either end of the read failed to 
align to an existing gene sequence (i.e. alignment beyond 
the IGC gene sequence was accepted). The read counts were 
used to estimate the abundance of the Clinical Microbiomics 
proprietary set of IGC metagenomic species (MGS) (Nielsen 
et al. 2014) derived from abundance profiles across 3200 ref-
erence samples. For each MGS, we defined the “core” genes 
as the 100 genes with the highest correlation of abundance 
across the reference samples. A table of MGS counts was 
created based on the total gene counts for the 100 core genes 
of each MGS. However, an MGS was considered as detected 
only if the read pairs were mapped to at least three of the 
100 core genes; MGSs that did not satisfy this criterion were 
designated as zero counts. The relative abundance estimate 
of each MGS was made by normalizing the counts for gene 
lengths. Rarefied (downsampled) MGS abundance profiles 
were calculated by performing the above procedure on a 
rarefied gene counts table (generated by random sampling, 
without replacement, of HQNH read pairs).

The gene and species richness and the Shannon diver-
sity index of samples were calculated (vegan R package) 
(Oksanen et al. 2017) from the number of genes or MGSs 
that were detected and their relative abundances in the down-
sampled (7,281,907 read pairs) data. Richness describes the 
number of species (or genes) that is detected in a sample, 
whereas the Shannon diversity index also takes the relative 
abundance of the species (or genes) into account. A commu-
nity dominated by a few abundant species (even though the 
total number of species may be high) will have a relative low 
diversity score, whereas communities with many similarly 
abundant species will have a higher diversity. Moreover, 
diversity is less sensitive to sampling errors, as it confers 
a higher weight to the more abundant species than to their 
rarer counterparts.

LPS activity, a marker of metabolic endotoxemia, was 
analyzed from serum samples (University of Helsinki, Fin-
land) using a Limulus amebocyte lysate assay coupled with 
a chromogenic substrate (HyCult Biochemistry B.V., Uden, 
the Netherlands).

High-sensitivity C-reactive protein (hsCRP) was deter-
mined  by using an automated colorimetric immunoassay on 
the Dade Behring Dimension RXL autoanalyzer (Siemens 
Healthcare, Camberly, Surrey, UK).

This study was conducted according to the guidelines 
laid down in the Declaration of Helsinki as revised in 
2013, and all procedures that involved human subjects were 
approved by the Ethics Committee of the Hospital District of 
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Southwest Finland (permission number 115/180/2012) and 
all participants provided written informed consent.

2.4  Statistics

Pearson correlation was used to investigate the extent to 
which GlycA and CRP reflect metabolomic and gut micro-
biome diversity. In this calculation, those variables which 
were not normally distributed (skewness > 1), were natu-
ral-logarithmic transformed. The P-values were adjusted 
for multiple correction using the Benjamini–Hochberg 
(BH)- procedure (false discovery rate (FDR < 0.05 con-
sidered significant). In the analysis of the contribution of 
both inflammatory markers on metabolic variables, a mul-
tivariate linear model was devised with prepregnancy BMI 
and serum triglycerides as a counfounding factors. Further, 
we also added gestational weeks to the model to take into 
account the possible impact of pregnancy duration on the 
levels of GlycA and hsCRP. The inclusion of serum triglyc-
erides in the model is based on the technical aspect of the 
NMR, i.e. the NMR-signal of GlycA may include signals 
from proteins and VLDL particles that carry the bulk of 
circulating triglycerides (TG) (Connelley et al. 2017) (per-
sonal communication from Nightingale). In the comparison 
of the unstandardized β-value between hsCRP and GlycA, 
the metabolomics variables in multivariable linear model, 
hsCRP, GlycA, triglycerides, prepregnancy BMI and ges-
tational weeks, were divided by their standard deviation. 
When investigating the association between inflammatory 
markers and gut microbiome diversity, intake of fibre was 
included in the multivariate linear model as a possible con-
founding factor, as in previous study, fibre correlated with 
gut microbiota richness (Röytiö et al. 2017). The multiple 
correction was not performed to the P-values obtained from 
multiple linear regression due to the fact that our aim was 
to compare the association of the inflammatory marker with 
individual metabolomic markers.

3  Results

3.1  Characteristics of the women

The women were overweight (65%) or obese (35%), the 
mean prepregnancy BMI of all women being 29.1 (SD 3.8) 
(Table 1). Over half of the women were highly educated 
with a college or university degree. The concentration of 
hsCRP and GlycA, activity of LPS and the indexes of gut 
microbiome diversity are presented in Table 1. GlycA and 
hsCRP correlated with prepregnancy BMI (GlycA, r = 0.275, 
P < 0.001, hsCRP r = 0.269, P < 0.001, respectively). As 
expected, there was a clear correlation between the values 
of GlycA and hsCRP (r = 0.310, P < 0.001).

3.2  GlycA and hsCRP differentially reflect the serum 
metabolomics

GlycA was more sensitive than hsCRP in reflecting the 
metabolic status of the participants. This was indicated by 
the fact that a larger number of the metabolomics mark-
ers, 144 out of 157, correlated with GlycA, while hsCRP 
correlated with 55 out of 157 markers (heatmap Fig. 1). 
When concentrating on the lipid metabolites, both markers 
correlated with the concentration of several sized VLDL-
particles and medium and small sized HDL-particles and 
their constituents. In addition to having higher regression 
coefficients values for all of these lipoproteins, the GlycA 
concentration also correlated with other lipoprotein particles 
and their constituents, including positive correlations with 
the concentrations of LDL-, IDL-particles and inverse cor-
relations with very large and large HDL- particles and their 
constituents, while hsCRP correlated only with the levels 
of triglycerides of LDL and IDL-particles. When amino 
acids were examined separately, the concentration of GlycA 
was shown to correlate with the amounts of branched chain 
amino acids isoleucine, leucine and valine, and phenylala-
nine, while hsCRP correlated only with those isoleucine, 
leucine and phenylalanine, and even then, with lower cor-
relation coefficient values.

3.3  Lower gut microbiome diversity and serum LPS 
activity is related to higher GlycA

When the correlations with gut microbiome diversity were 
assessed, the level of GlycA reflected gut microbiome diver-
sity (Gene Shannon, r = − 0.130, P = 0.020; Gene Rich-
ness, r = − 0.171, P = 0.002; MGS Shannon, r = − 0.134, 
P = 0.016; MGS Richness, r = − 0.196, P < 0.001), which, in 
contrast, displayed no correlation with hsCRP (P > 0.329 for 
all indexes). In a subset of samples (n = 146), we investigated 
the correlation between serum LPS and the inflammatory 
markers and observed a direct correlation between the lev-
els of GlycA and LPS (r = 0.43, P < 0.001), but again, there 
was no evidence of any correlation between hsCRP and LPS 
(r = 0.079, P = 0. 346).

3.4  GlycA reflect metabolic status independently 
of hsCRP

As GlycA was more sensitive at reflecting the metabolomic 
and gut microbiome diversity and further as hsCRP and 
GlycA correlated, we investigated whether the relation-
ship between metabolomics markers and GlycA would be 
independent of hsCRP. Therefore, we devised a multilinear 
regression model in which both GlycA and hsCRP were 
included as dependent variables with prepregnancy BMI, 
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Fig. 1  Heatmap of the Pearson correlation between inflammatory markers and metabolomics variables. *FDR < 0.05; **FDR < 0.01



 K. Mokkala et al.

1 3

76 Page 6 of 13

serum triglycerides and gestational weeks as confounding 
factors.

As observed in the correlation analysis, GlycA was bet-
ter than hsCRP in reflecting the metabolomics markers. 
We observed 90/156 significant associations with GlycA 
but only 32 with hsCRP (Supplementary Table 1, Fig. 2). 
Regarding both inflammatory markers, the direct correlation 
between the concentration and the constituents of medium 
HDL particles remained statistically significant. Several cor-
relations were only observed between lipid variables and 
GlycA, including direct correlations with the concentration 
and the constituents of several sized VLDL- and small HDL-
particles and an inverse correlation between the concentra-
tion and the constituents of very large HDL-particles. In 
this multilinear regression model, some of the associations 
between hsCRP and VLDL-particles and their constituents 
were negative. This is at odds with the findings observed 
in the Pearson correlation and may be due to the interfer-
ence of the strong correlations between GlycA and triglyc-
erides and the VLDL- particles and their constituents. With 
respect to the amino acids, the correlation between the con-
centration of GlycA, but not that of hsCRP, and the amino 
acids isoleucine, glycine, leucine, valine and phenylalanine 
(Supplementary Table 1, Fig. 2), remained significant in 

the multiple linear model. When focusing on gut microbi-
ome diversity, the indirect correlation between GlycA and 
diversity was also statistically significant, while no correla-
tion was seen with hsCRP (Table 2). When the intake of 
dietary fibre was taken into account, the correlation between 
MGS richness and GlycA remained statistically significant 
(B (95% CI): − 0.195 (− 20.6; − 2.7), P = 0.011, adjusted 
 R2 = 0.042), and a trend in correlation between Gene rich-
ness (B (95% CI − 16,523.5 (− 33,060.1; 13.0), P = 0.050, 
adjusted  R2 = 0.040) and MGS Shannon (B (95% CI − 0.047 
(− 0.094; 0.001), P = 0.053, adjusted  R2 = 0.027) and GlycA 
were detected.

No correlations were observed between concentrations of 
GlycA or hsCRP with the level of LPS (P < 0.190 for both) 
in the multiple linear regression when adjusted with values 
of prepregnancy BMI, serum triglycerides and gestational 
weeks.

4  Discussion

We demonstrated the superiority of using the low grade 
inflammatory marker, GlycA, over hsCRP in reflecting the 
host’s metabolic status in overweight and obese pregnant 

Fig. 1  (continued)
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Fig. 2  a-d Unstandardized beta (95% CI) of the linear regression 
between GlycA (squares) and hsCRP (circles) with metabolic vari-
ables. Both inflammatory markers and the metabolites are divided by 
their standard deviation. Black squares/circles indicate statistically 
significant correlation between inflammatory marker and metabolic 

variables (P < 0.05). DHA docosahexaenoic acid, FA fatty acids, LA 
linoleic acids, MUFA monounsaturated fatty acids, PUFA polyunsatu-
rated fatty acids; Remnant cholesterol (non-HDL, non-LDL -choles-
terol)
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women. The associations observed between GlycA and 
metabolomic markers were specifically related to those lipo-
proteins linked previously with the risk of cardiovascular 

diseases (Kontush 2015; Sacks et al. 2000) and amino acids, 
such as the BCAAs, which have been associated with type 2 
diabetes (Yoon 2016). In addition, higher levels of GlycA, 

Fig. 2  (continued)



GlycA, a novel marker for low grade inflammation, reflects gut microbiome diversity and is more…

1 3

Page 9 of 13 76

but not hsCRP, associated with a lower gut microbiome 
diversity, which indicates that GlycA may also be consid-
ered as a marker for gut microbiota dysbiosis, a phenomenon 

observed in clinical conditions manifested with metabolic 
aberrations. In summary, our findings suggest that GlycA 
may be considered as a more sensitive marker in reflecting 

Fig. 2  (continued)
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and identifying subjects at risk for developing metabolic 
complications.

This is the first study that has compared GlycA with 
hsCRP in relation to serum metabolomics in overweight 
and obese pregnant women; it was found that the former 

Fig. 2  (continued)
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correlates with more metabolomics variables and thus may be 
a more sensitive marker of an disturbed metabolomic profile 
in those individuals at risk for clinical complications, particu-
larly cardiovascular diseases. Previous studies have reported 
a clearer correlation between GlycA and clinically relevant 
measures such as triglycerides and HDL- and LDL- choles-
terol (Fizelova et al. 2017) in comparison to the traditional 
biochemical marker, hsCRP. Furthermore, when compared 
to hsCRP, GlycA has shown to be a better predictor for car-
diometabolic diseases (Connelley et al. 2017). These findings 
support our proposal that GlycA is a more reliable marker for 
metabolic complications than hsCRP.

Adipose tissue is known to be a major contributor to low 
grade inflammation (Calder et al. 2011). Both inflammatory 
markers associated with BMI in our participants, as has been 
the case in previous studies (e.g. Otvos et al. 2015; Lorenzo 
et al. 2017; Fizelova et al. 2017). Nevertheless, in order that 
our investigation of the relationship between metabolomics 
and inflammatory markers would be independent of obe-
sity, we included prepregnancy BMI in the analyses. Sub-
sequently, several relationships were detected, suggesting 
that obesity is only one explanatory factor and thus only 
partially explained the observed relations. We detected a 
weak, but significant inverse correlation between GlycA and 
gut microbiome diversity, while no relationship was evident 
between hsCRP and gut microbiome diversity. In addition, 
the GlycA level was related to higher serum LPS, further 
pointing to the involvement of gut microbiota in low grade 
inflammation. However, this correlation no longer remained 
statistically significant when pprepregnancy BMI, serum tri-
glycerides and gestational weeks were taken into account in 
the analysis.

In this study we have focused on overweight and obese 
pregnant women, which is an important study population 
due to their increased risk for metabolic diseases. The 
strength of the study is, that we have utilized high-tech 
approaches for analyzing both the serum metabolomics 
and gut microbiome diversity, which compared to mostly 
used 16S rRNA method, provides more information on 
gut microbiome diversity, i.e. the diversity and richness 
of the genes.In addition, we have applied robust statistical 
methods, i.e. adjusted the analysis with values of prepreg-
nancy BMI, serum triglycerides and gestational weeks to 
evaluate the independent effects of GlycA and hsCRP. It 
is of note that the faecal sample collection method may 
induce a limitation as the variation in individual collec-
tion times may induce a batch effect on our metagenomics 
data. Further, our study is limited to a population of over-
weight and obese pregnant women. However, our GlycA 
values measured in early pregnancy were similar or even 
lower compared to values in previous study in a Finnish 
population (Ritchie et al. 2015). We thus anticipate that 
the findings presented here could be comparable to normal 
weight and non-pregnant women, but this will need to be 
confirmed as well as it’s clinical relevance evaluated.

Conclusions. GlycA, a novel marker of low grade 
inflammation, reflected gut microbiome diversity and also 
the complex host metabolic status in a more robust way 
than hsCRP, a traditional marker for low grade inflamma-
tion. Thus, GlycA may be a more feasible marker for iden-
tifying the metabolic aberrations in overweight and obese 
women, i.e. a group of individuals at risk of developing 
clinical metabolic disorders.
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