In the attached link, Stephen Wolfram applies methods described in his A New Kind of Science and more recently in the The Wolfram Physics Project to
… formalizing the abstract foundations of medicine.
Wolfram certainly has his critics and even collaborators have had serious issues with him.
That said, he raises questions about large systems and provides insights into them that I seldom find elsewhere.
I thought the community would find it interesting.
A Theory of Medicine?
As it’s practiced today, medicine is almost always about particulars: “this has gone wrong; this is how to fix it”. But might it also be possible to talk about medicine in a more general, more abstract way—and perhaps to create a framework in which one can study its essential features without engaging with all of its details?
My goal here is to take the first steps towards such a framework. And in a sense my central result is that there are many broad phenomena in medicine that seem at their core to be fundamentally computational—and to be captured by remarkably simple computational models that are readily amenable to study by computer experiment.
I should make it clear at the outset that I’m not trying to set up a specific model for any particular aspect or component of biological systems. Rather, my goal is to “zoom out” and create what one can think of as a “metamodel” for studying and formalizing the abstract foundations of medicine.
What I’ll be doing builds on my recent work on using the computational paradigm to study the foundations of biological evolution. And indeed in constructing idealized organisms we’ll be using the very same class of basic computational models. But now, instead of considering idealized genetic mutations and asking what types of idealized organisms they produce, we’re going to be looking at specific evolved idealized organisms, and seeing what effect perturbations have on them. Roughly, the idea is that an idealized organism operates in its normal “healthy” way if there are no perturbations—but perturbations can “derail” its operation and introduce what we can think of as “disease”. And with this setup we can then think of the “fundamental problem of medicine” as being the identification of additional perturbations that can “treat the disease” and put the organism at least approximately back on its normal “healthy” track.
As we’ll see, most perturbations lead to lots of detailed changes in our idealized organism, much as perturbations in biological organisms normally lead to vast numbers of effects, say at a molecular level. But as in medicine, we can imagine that all we can observe (and perhaps all we care about) are certain coarse-grained features or “symptoms”. And the fundamental problem of medicine is then to work out from these symptoms what “treatment” (if any) will end up being useful. (By the way, when I say “symptoms” I mean the whole cluster of signs, symptoms, tests, etc. that one might in practice use, say for diagnosis.)
It’s worth emphasizing again that I’m not trying here to derive specific, actionable, medical conclusions. Rather, my goal is to build a conceptual framework in which, for example, it becomes conceivable for general phenomena in medicine that in the past have seemed at best vague and anecdotal to begin to be formalized and studied in a systematic way. At some level, what I’m trying to do is a bit like what Darwinism did for biological evolution. But in modern times there’s a critical new element: the computational paradigm, which not only introduces all sorts of new, powerful theoretical concepts, but also leads us to the practical methodology of computer experimentation. And indeed much of what follows is based on the (often surprising) results of computer experiments I’ve recently done that give us raw material to build our intuition—and structure our thinking—about fundamental phenomena in medicine.
…